RAG 切片利器 LumberChunker 是如何智能地把文档切割成 LLM 爱吃的块

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: RAG 里的文档应该怎么切割比较好呢?按固定的字符数或词数?按句?按段落?加个重叠窗口?还是 ...

banner.png


丹尼尔:蛋兄,问个问题呗。RAG 里的文档应该怎么切割比较好呢?按固定的字符数或词数?按句?按段落?加个重叠窗口?感觉这些都太简单粗暴,容易把相关的内容给拆散了


蛋先生:恩,你说得对。这些方法一刀切,确实没办法考虑上下文的语义关系。现在大模型越来越强大,完全可以借助它们的能力,比如 LumberChunker


丹尼尔:LumberChunker?


蛋先生:这个名字起得非常有意思。"Lumber"是指经过精细加工的木材。这个方法就像一位经验丰富的木匠,不是简单地用锯子乱砍,而是根据木材的纹理和特性,将文档切割成结构合理、大小适中的块。每一块都能保留完整的语义,同时又不会超出大模型的处理能力


丹尼尔:哇塞,听起来很酷,具体是怎么切的呢?


蛋先生:我们直接来走一遍切块流程,相信聪明的你一下就懂了



LumberChunker 的切块流程


✎ 第一步,自然拆分


蛋先生:咱们先把文章按自然段落拆开,比如用空行或缩进作为分界。这样切出来的就是人类写作时天然的语义单位了


丹尼尔:明白,就是先把原文分成几段


✎ 第二步,初步分组


蛋先生:接着我们来给每个段落计算 token 数,并设定一个上限阀值,比如 550 tokens。从第一个段落开始往后加,假设第 1、2、3 段加起来小于 550,但再加上第 4 段就超过阈值,那就先把第 1 ~ 3 段打包成一组


丹尼尔:哦?就是以长度上限作为分组的依据吗?


蛋先生:是的,这个 token 数阈值主要是考虑了模型输入长度的限制,同时将它作为分组的依据,一举两得


丹尼尔:妙啊!


✎ 第三步,找语义断裂点


蛋先生:最后我们把刚才那一组(第 1 ~ 3 段)送进大模型,让它判断:

# 提示语简单示例
“从哪个段落开始,内容跟第一个段落关系不大了?”

模型会返回一个索引数字,比如:

-1 表示这几个段落语义连贯,全相关
2 表示从第 2 段之后,主题开始变化


丹尼尔:如果是 -1 呢?


蛋先生:那就说明第 1 ~ 3 段语义一致,比如都是在讲“人工智能基础、机器学习、深度学习”,那它们就组成一个完整的语义块。然后我们继续拿第 4 段当新起点


丹尼尔:哦,那如果模型输出为 2 呢?


蛋先生:那就表示第 1、2 段关系紧密,第 3 段开始语义发生变化。于是我们就可以把 1、2 段作为一个语义块生成 embedding,第 3 段作为新一组的开头


第四步,循环以上流程


丹尼尔:然后呢?


蛋先生:我们在上面的流程处理后,拿到了新的起点段落,然后重复以上流程,直到所有段落都被处理完毕


丹尼尔:哎呦不错哦,又简单又有效,这样看上去每个相关的块基本都可以在一起,不会被硬拆开


蛋先生:没错,有了高质量的分块,RAG 系统在检索相关信息时会更准确,因为每个块都是语义完整的单元,不会因为分块不当导致信息丢失或混乱


丹尼尔:看来 LumberChunker 确实是个智能的"木匠",切得恰到好处啊!




写在最后


若已看完上述对话,可通过下图进一步加深对 LumberChunker 的理解

1.jpeg

“亲们,都到这了,要不,点赞或收藏或关注支持下我呗 o( ̄▽ ̄)d”


目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 前端开发
解决推理能力瓶颈,用因果推理提升LLM智能决策
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
295 6
解决推理能力瓶颈,用因果推理提升LLM智能决策
|
7月前
|
人工智能 安全 API
不到100行代码,实现一个简易通用智能LLM Agent
本文将分享如何使用不到 100 行的 Python 代码,实现一个具备通用智能潜力的简易 LLM Agent。你将看到整个实现过程——从核心原理、提示(Prompt)调优、工具接口设计到主循环交互,并获得完整复现代码的详细讲解。
1342 101
不到100行代码,实现一个简易通用智能LLM Agent
|
2月前
|
人工智能 自然语言处理 监控
05_用LLM创建知识库:从文档到智能问答系统
在2025年,随着大语言模型(LLM)技术的飞速发展,如何让这些强大的模型更好地理解和应用企业或个人的专业知识,成为了一个重要课题。传统的LLM虽然知识渊博,但在面对特定领域的专业问题时,常常会出现"一本正经地胡说八道"的情况。而检索增强生成(Retrieval-Augmented Generation,简称RAG)技术的出现,为这一问题提供了完美解决方案。
|
3月前
|
人工智能 自然语言处理 数据可视化
手把手教你用LLM图转换器构建知识图谱:从文本到知识的智能转换
本文介绍如何利用大型语言模型(LLM)自动化构建知识图谱,涵盖核心技术、实现方法、优化策略及多领域应用,助力从非结构化文本中高效提取结构化知识。
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
220 4
|
人工智能 自然语言处理 数据库
基于RAG和LLM的水利知识问答系统研究
随着全球水资源紧张加剧,我国面临严峻的水资源管理挑战。《十四五规划》提出构建智慧水利体系,通过科技手段提升水情测报和智能调度能力。基于大语言模型(LLM)的水利智能问答系统,利用自然语言处理技术,提供高效、准确的水利信息查询和决策支持,助力水资源管理智能化。该系统通过RAG技术和Agent功能,实现了对水利知识的深度理解和精准回答,适用于水利知识科普、水务治理建议及灾害应急决策等多个场景,推动了水利行业的信息化和智能化发展。
|
人工智能 自然语言处理 前端开发
基于RAG和LLM的水利知识大语言模型系统开发有感
在数字化时代,水利行业的智能化管理尤为重要。本文介绍了基于大语言模型(LLM)和检索增强生成(RAG)技术的水利知识问答系统的开发过程。该系统结合了前沿AI技术和水利专业知识,通过构建全面的水利知识库,优化用户体验,确保系统的灵活性和可扩展性。项目展示了AI技术在垂直领域的巨大潜力,为水利行业的智能化发展贡献力量。
|
8月前
|
人工智能 中间件 程序员
LLM 不断提升智能下限,MCP 不断提升创意上限
LLM 是大脑,MCP 是手脚。LLM 不断提升智能下限,MCP 不断提升创意上限。所有的应用和软件都会被 AI 改造,将向所有的应用和软件都会被 MCP 改造的新范式演进。
718 24
|
8月前
|
人工智能 算法 数据库
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_
|
8月前
|
人工智能 开发框架 搜索推荐
27.4K Star!这个LLM应用宝库让你秒变AI全栈高手,RAG和AI Agent一网打尽!
想要快速入门LLM应用开发?想要了解最新的RAG和AI Agent技术?这个收获27.4K Star的开源项目集合了当下最热门的LLM应用案例,从简单的PDF对话到复杂的多智能体系统应该有尽有。无论你是AI开发新手还是经验丰富的工程师,这里都能找到适合你的项目!
348 0

热门文章

最新文章