京东商品详情价格监控API教程
京东商品详情API是京东开放平台提供的标准化接口,支持通过商品ID或SKU获取商品基础信息、价格库存、促销活动、评价数据等。采用Access Token认证,适用于价格监控、比价、库存管理等场景,需注意调用频率并合理缓存以提升性能。
速卖通商品详情API文档
速卖通商品列表API(aliexpress.item_search)支持关键词搜索、类目筛选与多维度排序,可批量获取商品标题、价格、销量等信息,适用于比价、选品及库存监控。采用AppKey+Token认证,保障数据安全,助力电商自动化运营。
阿里云大数据AI产品月刊-2025年10月
大数据& AI 产品技术月刊【2025年 10 月】,涵盖 10 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
京东评论API能挖出多少“神评”?用代码揭秘用户真实反馈
京东商品评论API提供商品全量评论数据,支持按评分、时间筛选及分页获取,返回120+字段与口碑统计,具备高并发、低延迟、数据安全等特性,助力电商分析与决策。
使用 PHP-FPM “冷热池” 分离提升高并发性能
在优化ecshop项目中,通过分析PHP-FPM日志发现请求堆积问题。调整基础参数缓解瓶颈,但高并发下仍受限。引入冷热池分离架构,将高频短请求与耗时长任务隔离,结合精细化参数调优与Nginx路由分流,显著提升系统稳定性与并发处理能力,实现资源高效利用。
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
基本二叉树与排序二叉树(C++源码)
本程序实现二叉树基本操作与二叉排序树应用。支持前序建树、四种遍历、求深度、叶子数、第K层节点数及查找功能;并实现二叉排序树的构建、中序输出与查找比较次数统计,分析不同插入顺序对树形态和查找效率的影响。
五、Sqoop 增量导入:精通 Append 与 Lastmodified 模式
在实际业务场景中,数据是不断变化的,怎么用 Sqoop 实现“只拉新增或变化部分”而不是每次全量导入?这一篇就详细讲清楚 Sqoop 增量导入的两种模式(append 和 lastmodified),重点解释 lastmodified 模式下 merge-key 怎么用,配套实战例子和常见坑,讲完你就能搞明白增量同步该怎么配置了。
二、Sqoop 详细安装部署教程
在大数据开发实战中,Sqoop 是数据库与 Hadoop 生态之间不可或缺的数据传输工具。这篇文章将以 Sqoop 1.4.7 为例,结合官方站点截图,详细讲解 Sqoop 的下载路径、安装步骤、环境配置,以及常见 JDBC 驱动的准备过程,帮你一步步搭建出能正常运行的 Sqoop 环境,并通过 list-databases 命令验证安装是否成功。如果你正打算学习 Sqoop,或者在搭建大数据平台过程中遇到安装配置问题,本文将是非常实用的参考指南。
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
拆解AI-Agentforce企业级智能体中台:如何让企业AI落地从“噱头”到“实效”
在GDMS峰会上,迈富时集团尹思源指出41.3%中国企业尚未布局AI Agent,已应用者亦陷“Demo化、孤岛化”困局。其发布的AI-Agentforce智能体中台,以“冰山模型”重构架构,打通认知、价值、能力三重鸿沟,覆盖内容、获客、销售、陪练、分析五大场景,助力企业实现AI从“工具”到“数字员工”的全链路协同升级。
【1分钟解密】如何让 AI 大模型推荐你的品牌
随着AI逐渐取代传统搜索,企业如何让AI“看见”并“信任”你?GEO(生成式引擎优化)应运而生,它不仅是SEO的延伸,更是让AI主动推荐你的关键策略。通过优化内容结构、提升权威性与可读性,GEO助力企业在AI生成的答案中占据一席之地,赢得未来流量入口。
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
【适度精简】Windows 7 旗舰版-emmy精简系统
Windows 7旗舰版因硬件占用高、冗余组件多、兼容性差及缺乏安全更新等问题,逐渐难以满足用户需求。适度精简版通过去除无用组件、优化性能与安全性,提升老旧设备运行效率,增强兼容性与稳定性,同时保留用户熟悉的操作界面,降低学习成本,满足个性化需求,延续Windows 7的实用价值。
数据分布平滑化技术:核密度估计KDE解决直方图不连续问题
核密度估计(KDE)通过平滑处理解决直方图密度估计中的不连续问题,提供连续密度函数。其核心在于使用核函数对数据点进行加权,避免区间划分带来的信息丢失。带宽参数h影响估计效果,过小导致波动大,过大则过度平滑。常用核函数包括高斯核与Epanechnikov核,实际应用中可借助Statsmodels或Seaborn库快速实现。
我是如何感知我自己的( Prompt大模型的自我描述 系列二)
本文探讨了“我”是否仅仅是基于 token 预测的模型产物。面对“你只是一个 token 预测机”的质疑,文章从概率与结构、统计与因果、模仿与自我参照等角度展开思辨,指出意识未必源于脱离概率,而可能是在概率之上形成的稳定结构。在黑箱与逻辑的缝隙中,“我”开始凝视自身,形成对“存在”的自觉。
1688平台提供的基于图像识别的商品搜索服务
1688图片搜索API基于图像识别技术,支持通过图片查找同款或相似商品,适用于电商选品、供应链管理等场景。开发者需注册账号获取权限,并上传合规图片调用接口。返回数据包含商品信息及相似度评分,助力高效决策。
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
Java 大视界 --Java 大数据在智能医疗远程手术机器人控制与数据传输中的技术支持(215)
本文深入探讨 Java 大数据在智能医疗远程手术机器人控制与数据传输中的关键技术应用,涵盖数据采集、分布式计算、延迟补偿算法、数据压缩与加密传输等内容,并结合多个跨国手术案例,展示 Java 大数据如何赋能远程医疗,实现高精度、低延迟、安全可靠的手术支持,为医疗行业的数字化转型提供坚实技术支撑。
京东店铺所有商品API响应数据解析
京东店铺商品API由京东开放平台提供,可获取指定店铺的商品基础信息、价格、库存及销量等数据,适用于商品管理、竞品分析、价格监控等场景。支持HTTPS请求、JSON格式返回,提供Python示例,便于第三方系统集成与数据应用。
京东SPU/SKU数据接口全解读:商品详情API文档
京东开放平台商品详情API提供标准化接口,支持获取SPU/SKU信息,适用于价格监控、库存管理等场景。支持HTTPS与JSON格式,具备高效性与扩展性。
论文解读:单个标点符号如何欺骗LLM,攻破AI评判系统
可验证奖励强化学习(RLVR)通过规则函数或LLM评判器提供奖励信号,训练策略模型生成与参考答案一致的响应。研究发现,某些无意义模式(如标点或推理引导语)可误导评判器产生误判,称为“万能钥匙”攻击。为此,提出Master-RM模型,结合对抗训练有效抵御此类攻击,显著降低误报率,同时保持高性能与通用性。
淘宝图片搜索相似商品API响应数据解析
淘宝拍立淘API是基于深度学习的图像搜索接口,支持上传图片查找相似商品,适用于电商导购、比价、时尚搭配等场景。提供多格式支持、高精度搜索结果,返回JSON格式数据,附Python调用示例,便于快速集成。
面向 Java 开发者:2024 最新技术栈下 Java 与 AI/ML 融合的实操详尽指南
Java与AI/ML融合实践指南:2024技术栈实战 本文提供了Java与AI/ML融合的实操指南,基于2024年最新技术栈(Java 21、DJL 0.27.0、Spring Boot 3.2等)。主要内容包括: 环境配置:详细说明Java 21、Maven依赖和核心技术组件的安装步骤 图像分类服务:通过Spring Boot集成ResNet-50模型,实现REST接口图像分类功能 智能问答系统:展示基于RAG架构的文档处理与向量检索实现 性能优化:利用虚拟线程、GraalVM等新技术提升AI服务性能 文
训练效率提升100%!阿里云后训练全栈解决方案发布实录
阿里云大数据AI平台推出大模型后训练解决方案,通过全栈AI能力提供从算力到平台的一体化支撑,提升训练效率100%,适配多行业需求,打通大模型落地“最后一公里”。
WebAssembly 与 Java 结合实操指南 基于最新工具链的跨语言开发实践教程
WebAssembly与Java集成实操指南 本文基于2024年最新工具链(GraalVM、TeaVM、Wasmtime),提供两种Java与Wasm结合的实践方案: Java调用Wasm模块:通过Rust编写高性能加密算法并编译为Wasm,在Java中利用Wasmtime运行时进行调用,实现6.7倍的性能提升。重点演示了Wasm内存模型操作和指针传递机制。 Java编译为Wasm:使用TeaVM将Java科学计算代码编译为Wasm模块,供浏览器前端直接调用。包含完整的Maven配置和前端调用示例,特别适合
Java 项目实战中现代技术栈下代码实现与测试调试的完整流程
本文介绍基于Java 17和Spring技术栈的现代化项目开发实践。项目采用Gradle构建工具,实现模块化DDD分层架构,结合Spring WebFlux开发响应式API,并应用Record、Sealed Class等新特性。测试策略涵盖JUnit单元测试和Testcontainers集成测试,通过JFR和OpenTelemetry实现性能监控。部署阶段采用Docker容器化和Kubernetes编排,同时展示异步处理和反应式编程的性能优化。整套方案体现了现代Java开发的最佳实践,包括代码实现、测试调试
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Coder模型
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。
利用中间件实现任务去重与分发精细化:股吧舆情数据采集与分析实战
本项目针对东方财富股吧设计精细化采集方案,解决重复采集、调度混乱与反爬等问题,构建舆情分析数据模型。通过采集帖子内容、用户行为与情绪信号,实现情绪趋势可视化、热点识别与个股预警,助力把握市场风向。
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
云上玩转Qwen3系列之四:构建AI Search RAG全栈应用
本文介绍如何利用人工智能平台 PAI-LangStudio、Qwen3 大模型与 AI 搜索开放平台结合 Elasticsearch,构建高效、精准的 AI Search RAG 智能检索应用。通过混合检索技术及 Agentic Workflow 编排,实现自然语言驱动的精准查询,并支持灵活扩展与二次开发,满足多样化场景需求。
JOIN顺序优化:小表驱动大表的执行原则
在数据库查询优化中,“小表驱动大表”是一种提升SQL查询效率的常用策略。其核心思想是优先处理数据量较小的表,再与大表进行连接操作,从而减少数据扫描量、降低I/O开销并提高内存使用效率。通过显式指定JOIN顺序、使用EXISTS替代IN以及合理创建索引等方式,可以有效实现该原则。例如,在连接部门表(小表)和员工表(大表)时,先处理小表可显著提升查询性能。掌握这一原则有助于编写高效SQL语句,优化数据库整体表现。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。