LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
DataWorks X DeepSeek : 用AI实现数据开发治理!
阿里云DataWorks正式接入DeepSeek-R1系列模型,用户可通过DataWorks Copilot智能助手,以自然语言交互完成代码操作,实现数据开发、分析与治理全流程。DataWorks内置阿里巴巴16年大数据建设方法论,支持多种大数据引擎和AI计算服务,助力“Data+AI”全生命周期管理。开通DataWorks后即可免费体验DataWorks Copilot。
打造高效的Web Scraper:Python与Selenium的完美结合
本文介绍如何使用Python结合Selenium,通过代理IP、设置Cookie和User-Agent抓取BOSS直聘的招聘信息,包括公司名称、岗位、要求和薪资。这些数据可用于行业趋势、人才需求、企业动态及区域经济分析,为求职者、企业和分析师提供宝贵信息。文中详细说明了环境准备、代理配置、登录操作及数据抓取步骤,并提醒注意反爬虫机制和验证码处理等问题。
别再只把 Pulsar 当 Kafka 平替了:主题分层、持久化和跨地域复制,才是它的杀手锏
别再只把 Pulsar 当 Kafka 平替了:主题分层、持久化和跨地域复制,才是它的杀手锏
AI时代增长逻辑迁移白皮书
本白皮书探讨AI时代企业增长从“流量采购”向“系统信任”的范式迁移,提出SPREAD增长飞轮框架,解析算法推荐环境下的新逻辑,助力企业构建可持续、可复利的长期增长路径。
Vue3 Composition API深度解析:原理、用法与迁移实践
本文深度解析Vue3 Composition API的核心优势、常用API、底层原理与迁移实践,对比Options API的局限性,详解ref、reactive、watch、生命周期钩子等用法,剖析基于Proxy的响应式机制,并提供渐进式迁移策略,助开发者高效掌握Vue3开发范式。
大模型推理与应用术语解释
简介:大语言模型核心技术涵盖推理、生成式AI、检索增强生成(RAG)、提示工程、上下文学习、代理、多模态学习与语义搜索。这些技术共同推动AI在内容生成、知识检索、智能决策和跨模态理解等方面的能力跃升,广泛应用于问答系统、创作辅助、企业服务与自动化任务,正重塑人机交互与信息处理范式。(238字)
AgentScope x RocketMQ:构建多智能体应用组合
AgentScope是阿里巴巴推出的开发者友好型多智能体框架,支持模块化、可定制的智能体应用开发。通过集成RocketMQ,实现高效、可靠的A2A通信,助力构建如“智能旅行助手”等复杂协作场景,提升开发效率与系统可扩展性。(238字)
大模型应用开发中MCP与Function Call的关系与区别
MCP与Function Call是大模型应用的两大关键技术。前者是跨模型的标准协议,实现多工具动态集成;后者是模型调用外部功能的机制。MCP构建通用连接桥梁,支持多模型、跨平台协作,具备高扩展性与解耦能力;Function Call则依赖特定模型,直接解析意图并调用函数。两者在企业级系统中可协同工作:模型通过Function Call识别意图,转为MCP标准请求调用工具,兼顾智能解析与生态扩展。未来将趋向融合,形成“模型解析-协议传输-工具执行”的统一范式。
全面认识MCP:大模型连接真实世界的“USB-C接口”
MCP(模型上下文协议)是Anthropic推出的AI“万能接口”,旨在统一大模型与工具、数据源的连接标准。它简化集成、提升任务处理能力,被誉为AI时代的“USB-C”。通过标准化通信,MCP让智能体可自主调用工具、执行复杂任务,推动AI应用迈向高效、安全、可扩展的新阶段。
OOM排查之路:一次曲折的线上故障复盘
本文记录了一次线上服务因Paimon数据湖与RocksDB集成引发的三次内存溢出(OOM)故障排查全过程。通过MAT、NMT、async-profiler等工具,结合监控分析与专家协作,最终定位到RocksDB通过JNI申请的堆外内存未释放是根源。团队通过架构优化,改由Flink统一写入Paimon,彻底解决问题。文章系统梳理了排查思路与工具使用,为类似技术栈提供宝贵经验。
大模型基础概念术语解释
大语言模型(LLM)基于Transformer架构,通过海量文本训练,具备强大语言理解与生成能力。其核心组件包括注意力机制、位置编码与嵌入层,支持文本分割为Token进行处理。参数量达十亿乃至万亿级,展现涌现与泛化能力,能完成多任务推理。混合专家模型(MoE)提升效率与扩展性,推动大模型持续发展。(237字)
五、Hive表类型、分区及数据加载
在 Hive 中设计表,绝不仅是“建个结构那么简单”。选对内部表或外部表,决定了数据的归属和生命周期;设计合理的静态/动态分区策略,则直接关系到大数据场景下的查询效率和存储管理成本。本文深入讲解 Hive 表类型与分区机制,配合大量实战代码与练习题,带你从“写对语法”走向“设计合理”,让你的数仓查询快到飞起!
实战解析:淘宝商品评论item_review接口
本文详解2025年淘宝开放平台taobao.item.review.get接口合规调用方法,涵盖权限申请、参数配置、HMAC-SHA1签名生成及Java原生代码实现,无需第三方SDK,可快速集成至数据采集系统,稳定获取商品评论详情。
Python | K折交叉验证的参数优化的GradientBoost及SHAP可解释性分析回归预测算法
本教程介绍基于Python的GradientBoost回归预测算法,结合K折交叉验证与贝叶斯/随机/网格搜索进行超参数优化,并引入SHAP实现模型可解释性分析。涵盖数据预处理、模型训练、多维度评估及可视化,适用于地球科学、医学、工程、经济等多个领域的连续变量预测任务,代码与数据齐全,适合科研与实际应用。
构建AI智能体:五十九、特征工程:数据预处理到特征创造的系统性方法
摘要:特征工程是将原始数据转化为机器学习模型可理解格式的关键步骤,类比于食材烹饪过程。其核心包括数据清洗(处理缺失值、异常值)、特征转换(标准化、分箱)、特征创造和特征选择。通过员工离职预测案例,展示了如何通过单变量分析(满意度、工作时长分布)、多变量分析(满意度与绩效关系)和业务分析(部门薪资组合)构建有效特征。特征工程能提升模型性能(如使用简单模型获得好效果)、增强可解释性(明确风险因素)并减少数据需求。
淘宝商品评论API实战:从数据获取到情感分析
淘宝商品评论API是开放平台提供的核心接口,支持获取文字、评分、多媒体等评论数据,具备实时性强、分类筛选、批量查询等特点,助力电商数据分析与用户行为研究,提升产品优化与服务质量。(238字)
京东商品详情价格监控API教程
京东商品详情API是京东开放平台提供的标准化接口,支持通过商品ID或SKU获取商品基础信息、价格库存、促销活动、评价数据等。采用Access Token认证,适用于价格监控、比价、库存管理等场景,需注意调用频率并合理缓存以提升性能。
速卖通商品详情API文档
速卖通商品列表API(aliexpress.item_search)支持关键词搜索、类目筛选与多维度排序,可批量获取商品标题、价格、销量等信息,适用于比价、选品及库存监控。采用AppKey+Token认证,保障数据安全,助力电商自动化运营。
阿里云大数据AI产品月刊-2025年10月
大数据& AI 产品技术月刊【2025年 10 月】,涵盖 10 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
京东评论API能挖出多少“神评”?用代码揭秘用户真实反馈
京东商品评论API提供商品全量评论数据,支持按评分、时间筛选及分页获取,返回120+字段与口碑统计,具备高并发、低延迟、数据安全等特性,助力电商分析与决策。
使用 PHP-FPM “冷热池” 分离提升高并发性能
在优化ecshop项目中,通过分析PHP-FPM日志发现请求堆积问题。调整基础参数缓解瓶颈,但高并发下仍受限。引入冷热池分离架构,将高频短请求与耗时长任务隔离,结合精细化参数调优与Nginx路由分流,显著提升系统稳定性与并发处理能力,实现资源高效利用。
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
别再用均值填充了!MICE算法教你正确处理缺失数据
MICE是一种基于迭代链式方程的缺失值插补方法,通过构建后验分布并生成多个完整数据集,有效量化不确定性。相比简单填补,MICE利用变量间复杂关系,提升插补准确性,适用于多变量关联、缺失率高的场景。本文结合PMM与线性回归,详解其机制并对比效果,验证其在统计推断中的优势。
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
基本二叉树与排序二叉树(C++源码)
本程序实现二叉树基本操作与二叉排序树应用。支持前序建树、四种遍历、求深度、叶子数、第K层节点数及查找功能;并实现二叉排序树的构建、中序输出与查找比较次数统计,分析不同插入顺序对树形态和查找效率的影响。
五、Sqoop 增量导入:精通 Append 与 Lastmodified 模式
在实际业务场景中,数据是不断变化的,怎么用 Sqoop 实现“只拉新增或变化部分”而不是每次全量导入?这一篇就详细讲清楚 Sqoop 增量导入的两种模式(append 和 lastmodified),重点解释 lastmodified 模式下 merge-key 怎么用,配套实战例子和常见坑,讲完你就能搞明白增量同步该怎么配置了。
二、Sqoop 详细安装部署教程
在大数据开发实战中,Sqoop 是数据库与 Hadoop 生态之间不可或缺的数据传输工具。这篇文章将以 Sqoop 1.4.7 为例,结合官方站点截图,详细讲解 Sqoop 的下载路径、安装步骤、环境配置,以及常见 JDBC 驱动的准备过程,帮你一步步搭建出能正常运行的 Sqoop 环境,并通过 list-databases 命令验证安装是否成功。如果你正打算学习 Sqoop,或者在搭建大数据平台过程中遇到安装配置问题,本文将是非常实用的参考指南。
【1分钟解密】如何让 AI 大模型推荐你的品牌
随着AI逐渐取代传统搜索,企业如何让AI“看见”并“信任”你?GEO(生成式引擎优化)应运而生,它不仅是SEO的延伸,更是让AI主动推荐你的关键策略。通过优化内容结构、提升权威性与可读性,GEO助力企业在AI生成的答案中占据一席之地,赢得未来流量入口。
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。