opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

简介: opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

对于yolo v3已经训练好的模型,opencv提供了加载相关文件,进行图片检测的类dnn。
下面对怎么通过opencv调用yolov3模型进行目标检测方法进行详解,付源代码

1、建立相关目录

在训练结果backup文件夹下,找到模型权重文件,拷到win的工程文件夹下
在cfg文件夹下,找到模型配置文件,yolov3-voc.cfg拷到win的工程文件夹下
在data文件夹下,找到voc.names,类别标签文件,拷到win的工程文件夹下
在这里插入图片描述

2代码详解

weightsPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件
configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型配置文件
labelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件

引入模型的相关文件,这里需要使用yolo v3训练模型的三个文件
(1)模型权重文件 name.weights
(2)训练模型时的配置文件 yolov3-voc.cfg(一定和训练时一致,后面会提原因)
(3)模型类别的标签文件 voc.names

LABELS = open(labelsPath).read().strip().split("\n")

从voc.names中得到标签的数组LABELS
我的模型识别的是车和人
voc,names文件内容
voc.names文件内容
LABELS数组内容
LABELS数组

COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8")#颜色  随机生成颜色框

根据类别个数随机生成几个颜色 ,用来后期画矩形框
[[ 33 124 191]
[211 63 59]]

boxes = []
confidences = []
classIDs = []

声明三个数组
(1)boxes 存放矩形框信息
(2)confidences 存放框的置信度
(3)classIDs 存放框的类别标签
三个数组元素一一对应,即boxes[0]、confidences[0]、classIDs[0]对应一个识别目标的信息,后期根据该信息在图片中画出识别目标的矩形框

net = cv2.dnn.readNetFromDarknet(configPath,weightsPath)

加载 网络配置与训练的权重文件 构建网络
注意此处opencv2.7不行 ,没有dnn这个类,最好opencv版本在4.0以上,对应python用3.0以上版本

image = cv2.imread('E:\deep_learn\yolov3_detection_image\R1_WH_ZW_40_80_288.jpg')
(H,W) = image.shape[0:2]

读入待检测的图片,得到图像的高和宽

ln = net.getLayerNames()

得到 YOLO各层的名称,之后从各层名称中找到输出层
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到yolo的各层非常多,红框圈的'yolo_94'、'yolo_106'即为输出层,下面就需要通过代码找到这三个输出层,为什么是三个?跟yolo的框架结构有关,yolo有三个输出。对应的我们在训练模型时修改 yolov3-voc.cfg文件,修改的filters、classes也是三处,详细参考
https://blog.csdn.net/qq_32761549/article/details/90020725#8_darknetcfgyolov3voccfg_183 8. 修改./darknet/cfg/yolov3-voc.cfg文件
在这里插入图片描述
下面就是在yolo的所有层名称ln中找出三个输出层,代码如下

out = net.getUnconnectedOutLayers()#得到未连接层得序号
x = []
for i in out:   # i=[200]
    x.append(ln[i[0]-1])    # i[0]-1    取out中的数字  [200][0]=200  ln(199)= 'yolo_82'
ln=x

yolo的输出层是未连接层的前一个元素,通过net.getUnconnectedOutLayers()找到未连接层的序号out= [[200] /n [267] /n [400] ],循环找到所有的输出层,赋值给ln
最终ln = ['yolo_82', 'yolo_94', 'yolo_106']
接下来就是将图像转化为输入的标准格式

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False)

用需要检测的原始图像image构造一个blob图像,对原图像进行像素归一化1 / 255.0,缩放尺寸 (416, 416),,对应训练模型时cfg的文件 交换了R与G通道
在这里插入图片描述
交换R与G通道通道是opencv在打开图片时交换了一次,此处交换即又换回来了
此时blob.shape=(1, 3, 416, 416),四维。
可以用numpy里的squeeze()函数把秩为1的维度去掉,然后显示图片出来看看

image_blob = np.squeeze(blob)
cv2.namedWindow('image_blob', cv2.WINDOW_NORMAL)
cv2.imshow('image_blob',np.transpose(image_blob,[1,2,0]))
cv2.waitKey(0)

在这里插入图片描述

net.setInput(blob) #将blob设为输入
layerOutputs = net.forward(ln)  #ln此时为输出层名称  ,向前传播  得到检测结果

将blob设为输入
ln此时为输出层名称 ,向前传播 得到检测结果。
此时layerOutputs即三个输出的检测结果,
在这里插入图片描述
layerOutputs是一个含有三个矩阵的列表变量,三个矩阵对应三个层的检测结果,其中一层的检测结果矩阵如下图
在这里插入图片描述
是个507*7的矩阵,这个矩阵代表着检测结果,其中507就是这层检测到了507个结果(即507个矩形框),其中7就是矩形框的信息,为什么是7呢,这里解释下,7=5+2,5是矩形框(x,y,w,h,c)2是2个类别分别的置信度(class0、class1). 所以每一行代表一个检测结果。

接下来就是对检测结果进行处理与显示
在检测结果中会有很多每个类的置信度为0的矩形框,要把这些与置信度较低的框去掉

#接下来就是对检测结果进行处理
for output in layerOutputs:  #对三个输出层 循环
    for detection in output:  #对每个输出层中的每个检测框循环
        scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2]
        classID = np.argmax(scores)#np.argmax反馈最大值的索引
        confidence = scores[classID]
        if confidence >0.5:#过滤掉那些置信度较小的检测结果
            box = detection[0:4] * np.array([W, H, W, H])
            (centerX, centerY, width, height)= box.astype("int")
            # 边框的左上角
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            # 更新检测出来的框
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

现在就将网络的检测结果提取了出来,框、置信度、类别。
可以先画一下看下效果

a=0
for box in  boxes:#将每个框画出来
    a=a+1
    (x,y)=(box[0],box[1])#框左上角
    (w,h)=(box[2],box[3])#框宽高
    if classIDs[a-1]==0: #根据类别设定框的颜色
        color = [0,0,255]
    else:
        color = [0, 255, 0]
    cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) #画框
    text = "{}: {:.4f}".format(LABELS[classIDs[a-1]], confidences[a-1])
    cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)#写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)

结果:
在这里插入图片描述
可以看到对于同一目标有几个矩形框,这需要对框进行非极大值抑制处理。
进行非极大值抑制的操作,opencv的dnn有个直接的函数
NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta=None, top_k=None)
bboxes需要操作的各矩形框对应咱程序的boxes
scores矩形框对应的置信度对应咱程序的confidences
score_threshold置信度的阈值,低于这个阈值的框直接删除
nms_threshold nms的阈值
非极大值的原理没有理解的话,里面的参数不好设置。
下面简单说下非极大值抑制的原理
1)先对输入检测框按置信度由高到低排序
2)挑选第一个检测框(即最高置信度,记为A)和其它检测框(记为B)进行iou计算
3)如果iou大于nmsThreshold, 那就将B清除掉
4)跳转到2)从剩余得框集里面找置信度最大得框和其它框分别计算iou
5)直到所有框都过滤完
NMSBoxes()函数返回值为最终剩下的按置信度由高到低的矩形框的序列号
进行非极大值抑制后,显示部分代码改一部分即可。直接给出代码

idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3)
box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4]
if len(idxs)>0:
    for seq in box_seq:
        (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角
        (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高
        if classIDs[seq]==0: #根据类别设定框的颜色
            color = [0,0,255]
        else:
            color = [0,255,0]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框
        text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq])
        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)

最终的检测结果
在这里插入图片描述
至此及用opencv加载yolo v3的模型,进行了一次图片的检测。

3、附源代码

#coding:utf-8
import numpy as np
import cv2
import os
weightsPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件
configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型配置文件
labelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件
#初始化一些参数
LABELS = open(labelsPath).read().strip().split("\n")
boxes = []
confidences = []
classIDs = []

#加载 网络配置与训练的权重文件 构建网络
net = cv2.dnn.readNetFromDarknet(configPath,weightsPath)  
#读入待检测的图像
image = cv2.imread('E:\deep_learn\yolov3_detection_image\R1_WH_ZW_40_80_288.jpg')
#得到图像的高和宽
(H,W) = image.shape[0:2]


# 得到 YOLO需要的输出层
ln = net.getLayerNames()
out = net.getUnconnectedOutLayers()#得到未连接层得序号  [[200] /n [267]  /n [400] ]
x = []
for i in out:   # 1=[200]
    x.append(ln[i[0]-1])    # i[0]-1    取out中的数字  [200][0]=200  ln(199)= 'yolo_82'
ln=x
# ln  =  ['yolo_82', 'yolo_94', 'yolo_106']  得到 YOLO需要的输出层



#从输入图像构造一个blob,然后通过加载的模型,给我们提供边界框和相关概率
#blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None)
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False)#构造了一个blob图像,对原图像进行了图像的归一化,缩放了尺寸 ,对应训练模型

net.setInput(blob) #将blob设为输入??? 具体作用还不是很清楚
layerOutputs = net.forward(ln)  #ln此时为输出层名称  ,向前传播  得到检测结果

for output in layerOutputs:  #对三个输出层 循环
    for detection in output:  #对每个输出层中的每个检测框循环
        scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2] scores取第6位至最后
        classID = np.argmax(scores)#np.argmax反馈最大值的索引
        confidence = scores[classID]
        if confidence >0.5:#过滤掉那些置信度较小的检测结果
            box = detection[0:4] * np.array([W, H, W, H])
            #print(box)
            (centerX, centerY, width, height)= box.astype("int")
            # 边框的左上角
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            # 更新检测出来的框
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)


idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3)
box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4]
if len(idxs)>0:
    for seq in box_seq:
        (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角
        (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高
        if classIDs[seq]==0: #根据类别设定框的颜色
            color = [0,0,255]
        else:
            color = [0,255,0]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框
        text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq])
        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)
相关文章
|
5天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
32 5
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
13 1
|
7天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
7天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
23 2
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
24 2
|
9天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
40 9
|
5天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
6天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。