【智能优化算法】基于凌日算法求解单目标优化问题附matlab代码Transit Search Optimization Algorithm

简介: 【智能优化算法】基于凌日算法求解单目标优化问题附matlab代码Transit Search Optimization Algorithm

 💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥

📝目前更新:🌟🌟🌟智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。

                       

                             🎉🎉欢迎您的到来🎉🎉


               ⛅⛅⛅ 📃CSDN主页:Matlab科研室🌈🌈🌈


             📚📚📚📋所有代码目录见微信公众号:天天Matlab👨•💻👨•💻👨•💻

1 内容介绍

Transit Search Optimization Algorithm 代码是从一种新颖的天体物理学启发的元启发式优化算法中提取出来的,该算法基于著名的系外行星探索方法,即凌日搜索(TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化,如果观察到接收到的光量减少,则表明行星从恒星锋面经过。为了评估该算法的性能,考虑了73个约束和无约束问题,并将结果与13个著名的优化算法进行了比较。这组示例包括各种类型的问题,包括数学函数(28个高维问题和15个低维问题)、CEC函数(10个问题)、约束数学基准问题(G01–G13)以及7个约束工程问题。结果表明,与其他有效算法相比,对于基准问题,该算法的总体平均误差是最低的

2 仿真代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The following code are extracted from the reference below:

% https://authors.elsevier.com/sd/article/S2666-7207(22)00018-2

% Please cite this article as:

%  M. Mirrashid and H. Naderpour, Transit search: An optimization algorithm

%  based on exoplanet exploration; Results in Control and Optimization

%  (2022), doi: https://doi.org/10.1016/j.rico.2022.100127.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc; clear; close all

%% Definition of the Cost Function and its variables

Function_name='branin';   % Define your cost function (here is "Branin", a benchmark function"

[Vmin,Vmax,nV,Function] = CostFunction(Function_name);

CostFunction = @(x) Function(x);

%% Definition of the Algorithm Parameters

ns = 5;                 % Number of Stars

SN = 10;                % Signal to Noise Ratio

% Note: (ns*SN)=Number of population for the TS algorithm

maxcycle=500;           % max number of iterations

%% Transit Search Optimization Algorithm

disp('Transit Search is runing...')

[Bests] = TransitSearch (CostFunction,Vmin,Vmax,nV,ns,SN,maxcycle);

Best_Cost = Bests(maxcycle).Cost

Best_Solution = Bests(maxcycle).Location

%% Figure

figure = figure('Color',[1 1 1]);

G1=subplot(1,1,1,'Parent',figure);

x=zeros(maxcycle,1);

y=zeros(maxcycle,1);

for i = 1:maxcycle

   y(i,1) = Bests(i).Cost;

   x(i,1) = i;

end

plot(x,y,'r-','LineWidth',2);

xlabel('Iterations','FontWeight','bold','FontName','Times');

ylabel('Costs','FontWeight','bold','FontName','Times');

title (['Best Cost = ',num2str(Bests(maxcycle).Cost)])

box on

xlim ([1 maxcycle]);

ylim ([Bests(maxcycle).Cost Bests(1).Cost]);

set(G1,'FontName','Times','FontSize',20,'FontWeight','bold',...

   'XMinorGrid','on','XMinorTick','on','YMinorGrid','on','YMinorTick','on');

3 运行结果

image.gif编辑

4 参考文献

[1] Mirrashid M ,  Naderpour H . Transit search: An optimization algorithm based on exoplanet exploration[J]. Results in Control and Optimization, 2022.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
10天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
2天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
6天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
27 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
8天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
10天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
10天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
15 1
|
10天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
10天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
22 1
|
10天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】