matplotlib的基本图表配置之plot的使用(一)

简介: matplotlib的基本图表配置之plot的使用(一)

基本介绍

前期我们对Python的第三方库pyecharts进行了详细的介绍了,本期我们将开启Python的另一个第三方库matplotlib进行深入的学习和实践。


对于matplotlib而言,它的优势最大在于,可以使用少量的代码完成基本的图形绘制,但是对于pyecharts一般的炫酷的图标都是需要使用一些丰富的代码框架进行渲染的,matplotlib大部分是生成本地的静态图形,而pyecharts是生成网页版的动态可视化,二者的使用场景各有各的优势。


可以灵活的通过选择,达到我们业务所需;也可以结合不同的实际情况,改造和配置图形的基本结构。

导入模块


import matplotlib.pyplot as plt


直接调用plot()函数对列表数据绘图

plt.plot(x, y, fmt=‘xxx’, linestyle=, marker=, color=, linewidth=, markersize=, label=, )


x:点的横坐标,可迭代对象


y:点的纵坐标,可迭代对象


fmt = ‘#color#linestyle#marker’


linestyle:线的样式,字符串


image.png


image.png

image.png

RGB颜色:三原色


R G B


1 1 1 (1byte)


11111111 11111111 11111111 (8bit)


255 255 255 (10进制)


FF FF FF (16进制)


red: #FF0000


yellow: #FFFF00


black: #000000


white: #FFFFFF


label:图例,legend文字


matplotlib图的组成:

Figure (画布)

Axes (坐标系)

Axis (坐标轴)

图形(plot(),scatter(),bar(),…)

Title, Labels, …

基本示例

x = [1,2,3]
y = [1,2,3]
y = x
plt.plot(x,y,linestyle=':', linewidth=1, marker='^', markersize=10, label='1234')
plt.legend()

image.png


这里x和y所代表的是数据源,其次linestyle=‘:’代表的是点虚线,然后设置了线条的长度,marker=’^'代表的是下三角形的,markersize是设置的图标的大小,label是图形的标题。

有的小伙伴觉得这个图表的配置比较的复杂,其实在真实的绘制场景中,一般代码的编写也是比较的简单的,主要是需要对每一个配置元素了解,然后就可以快速的配置和设置。

相关文章
|
14天前
|
Python
使用Matplotlib创建不同类型图表的案例
【4月更文挑战第29天】使用Python的matplotlib库创建了四种基本图形:折线图、散点图、柱状图和饼图。代码分别展示了如何绘制这些图表,包括设置X轴和Y轴标签以及标题。这只是matplotlib的基础,更多图表和高级功能可供进一步学习和探索。
20 1
|
15天前
|
Python
【Matplotlib-1】-使用Matplotlib绘制图表组成元素
【Matplotlib-1】-使用Matplotlib绘制图表组成元素
|
26天前
|
搜索推荐 数据可视化 Python
Matplotlib图表中的数据标签与图例设置
【4月更文挑战第17天】这篇文章介绍了如何在Python的Matplotlib库中设置数据标签和图例,以增强图表的可读性和解释性。主要内容包括:使用`text`函数添加基本和自定义数据标签,以及自动和手动创建图例。图例的位置和样式可通过`loc`和相关参数调整。文章强调了数据标签和图例结合使用的重要性,提供了一个综合示例来展示实践方法。良好的图表设计旨在清晰有效地传达信息。
|
26天前
|
缓存 并行计算 数据可视化
Matplotlib性能优化:提升图表渲染速度
【4月更文挑战第17天】提升 Matplotlib 渲染速度的技巧:1) 减少数据点;2) 使用矢量化操作;3) 减少图表元素;4) 增量渲染;5) 优化图像保存;6) 更换更快的后端;7) 并行处理;8) 避免循环内绘图;9) 利用缓存;10) 使用专业图形工具。注意根据具体需求调整优化策略。
|
26天前
|
搜索推荐 数据可视化 Python
Matplotlib高级技巧:自定义图表样式与布局
【4月更文挑战第17天】本文介绍了Matplotlib的高级技巧,包括自定义图表样式和布局。通过设置`color`、`linestyle`、`marker`参数,可以改变线条、散点的颜色和样式;使用自定义样式表实现整体风格统一。在布局方面,利用`subplots`创建多子图,通过`gridspec`调整复杂布局,`subplots_adjust`优化间距,以及添加图例和标题增强可读性。掌握这些技巧能帮助创建更具吸引力的个性化图表。
|
26天前
|
搜索推荐 数据可视化 Python
Matplotlib进阶:打造个性化图表
【4月更文挑战第17天】本文介绍了如何使用Matplotlib进阶功能创建个性化图表,包括自定义样式表、制作动画、实现交互式图表及整合外部库。通过`plt.style.use()`可切换样式表,自定义图表样式;利用`FuncAnimation`模块可创建动画图表展示数据变化;启用交互模式配合事件处理函数,使图表响应鼠标操作;结合Seaborn和Plotly扩展Matplotlib功能,提升图表质量和交互性。这些技巧能帮助你打造更专业、更具吸引力的数据可视化作品。
|
26天前
|
数据可视化 数据挖掘 Python
Matplotlib图表类型详解:折线图、柱状图与散点图
【4月更文挑战第17天】本文介绍了Python数据可视化库Matplotlib的三种主要图表类型:折线图、柱状图和散点图。折线图用于显示数据随时间或连续变量的变化趋势,适合多条曲线对比;柱状图适用于展示分类数据的数值大小和比较;散点图则用于揭示两个变量之间的关系和模式。通过示例代码展示了如何使用Matplotlib创建这些图表。
|
26天前
|
数据可视化 UED Python
解锁Matplotlib的交互式图表功能
【4月更文挑战第17天】本文介绍了如何使用Matplotlib创建交互式图表,以增强数据探索体验。通过启用交互模式和利用`matplotlib.widgets`模块,可以创建滑动条、按钮等控件来改变图表属性。例如,滑动条可动态调整线宽,按钮用于切换图例显示。此外,还展示了如何使用Dropdown控件动态更新图表数据。掌握这些技巧能提升数据可视化的交互性和用户体验。
|
26天前
|
数据采集 数据处理 Python
Matplotlib实战:从数据处理到图表展示
【4月更文挑战第17天】本文介绍了使用Matplotlib进行数据图表展示的实战步骤,从数据处理(如使用pandas清洗数据)到选择图表类型,再到使用Matplotlib绘制折线图并进行美化定制(如调整线条样式、添加图例、设置坐标轴范围和添加网格)。最后,文章还展示了如何保存图表为图片文件。通过本文,读者可掌握利用Matplotlib创建精美图表的技能。
|
28天前
|
Python
Python 的科学计算和数据分析: 如何使用 Matplotlib 绘制图表?
Matplotlib是Python的绘图库,用于创建图表。基本步骤包括:导入库(`import matplotlib.pyplot as plt`),准备数据(如`x = [1, 2, 3, 4, 5]`, `y = [2, 4, 6, 8, 10]`),创建图表对象(`fig, ax = plt.subplots()`),绘制图表(`ax.plot(x, y)`),设置标题和标签(`ax.set_title()`, `ax.set_xlabel()`, `ax.set_ylabel()`),最后显示图表(`plt.show()`)。完整示例代码展示了如何绘制一个简单的折线图。
16 5