⑥一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

简介: 一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

3、 数据导出

为了演示数据的导出。这里我们引入一个新的第三方库tushare,通过这个库,我们可以轻松的获取金融相关数据,如股票数据。


以下为tushare库的介绍。 其官方文档地址为:http://tushare.org/index.html TuShare是一个免费、开源的python财经数据接口包。主要实现对股票等金融数据从数据采集、清洗加工 到 数据存储的过程,能够为金融分析人员提供快速、整洁、和多样的便于分析的数据,为他们在数据获取方面极大地减轻工作量,使他们更加专注于策略和模型的研究与实现上。


考虑到Python pandas包在金融量化分析中体现出的优势,TuShare返回的绝大部数据格式都是pandas DataFrame类型,非常便于用pandas/NumPy/Matplotlib进行数据分析和可视化。


当然,如果您习惯了用Excel或者关系型数据库做分析,您也可以通过TuShare的数据存储功能,将数据全部保存到本地后进行分析。


我们先获取2017年,第二季度全部股票的业绩报告,盈利能力,营运能力数据,然后分别用不同方式保存它们。


!pip install wheel
!pip install lxml
!pip install tushare
!pip install beautifulsoup4
!pip install requests
!pip install pandas
import tushare as ts
# 业绩报告
report = ts.get_report_data(2017,2)
# 盈利能力
profit = ts.get_profit_data(2017,2)
# 营运能力
operation = ts.get_operation_data(2017,2)

image.png



3.1 导出到本地文件

3.1.1 导出为文本文件

report.to_csv('./report.csv',index = False,encoding = 'utf-8')
profit.to_csv('./profit.csv',index = False,encoding = 'utf-8')
operation.to_csv('./operation.csv',index = False,encoding = 'utf-8')

3.1.2 导出为Excel文件

# 可以分别导出到不同的Excel工作簿;
!pip  install openpyxl
report.to_excel('./report.xlsx',index =False)
profit.to_excel('./profit.xlsx',index = False)
operation.to_excel('./operation.xlsx',index =False)

在pandas里面提供了大量的数据载入和数据导出的方法


#先打开一个Excel工作簿,然后分别写入三个表格,然后关掉Excel工作簿
writer = pd.ExcelWriter('./finance.xlsx')
report.to_excel(writer,sheet_name='report',index = False)
profit.to_excel(writer,sheet_name='profit',index = False)
operation.to_excel(writer,sheet_name='operation',index = False)
# 文件写入完毕后关掉Excel工作簿
writer.close()

3.1.3 导出为Json文件

# 导出为json文件
report.to_json('./report.json')

3.1.4 导出为hdf文件

# 导出为hdf文件
!pip install tables
from warnings import filterwarnings
filterwarnings('ignore')
report.to_hdf('./report.hdf','report')
# ImportError: HDFStore requires PyTables, "No module named 'tables'" problem importing

3.2 将数据存储到数据库

import sqlite3
# 创建连接
sqlite_con = sqlite3.connect('./pandas.db')
# 写入数据
report.to_sql('report',sqlite_con,if_exists ='replace',index =False)
profit.to_sql('profit',sqlite_con,if_exists ='replace',index =False)
operation.to_sql('operation',sqlite_con,if_exists ='replace',index =False)

3.3 数据导入

3.3.1 从本地文件

# 从文本文件
# 推荐使用相对路径
pd.read_csv('./report.csv').head(3)


image.png


#从Excel文件
# 如果不是被迫选择Excel文件格式,一般不推荐使用Excel文件格式,速度很慢
!pip install xlrd
pd.read_excel('./report.xlsx').head()

image.png

image.png




4 、分组计算与汇总

如果说,数据的导入和导出是数据的前提,那么数据的处理分析那么就是数据的精华


image.png


按照不同的字段进行分组聚合统计,count()计数,sum()求和


image.png

image.png

image.png




按照不同的字段分别分组聚合,然后进行统计分析,输出需要显示的指标变量的值


注意这里的describe()用于描述性分析,直接可以使用该方法


5、数据融合

image.png


构造两个临时数据表,用于我们后面的操作


image.png


直接进行连接


image.png

image.png



Pandas高级操作补充


image.png

image.png

image.png

image.png




对于pandas的高级操作,无非是进行数据增删改查,也就是分组聚合,排序处理等,在处理数也可以使用其他的工具,例如:MySQL数据库的分析,也还是不错的!!!

相关文章
|
16天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
9天前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
30 5
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
25 2
|
11天前
|
存储 数据采集 数据处理
效率与精准并重:掌握Pandas与NumPy高级特性,赋能数据科学项目
在数据科学领域,Pandas和NumPy是Python生态中处理数据的核心库。Pandas以其强大的DataFrame和Series结构,提供灵活的数据操作能力,特别适合数据的标签化和结构化处理。NumPy则以其高效的ndarray结构,支持快速的数值计算和线性代数运算。掌握两者的高级特性,如Pandas的groupby()和pivot_table(),以及NumPy的广播和向量化运算,能够显著提升数据处理速度和分析精度,为项目成功奠定基础。
23 2
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
75 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
57 0
|
16天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
26 3
|
17天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
33 2

热门文章

最新文章