⑤一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

简介: 一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

2、pandas数据结构之DataFrame

2.1 DataFrame的创建

2.1.1 从Series or dicts创建

image.png


通过字典进行构造,这也满足了,我们如何把字典类型转换为dataframe类型,最后保存在我们需要的数据表类型里面


image.png


说实话,在我们的日常数据处理里面,我们一般是把字典嵌套在列表里面,那么我们就可以把列表放入这个里面,最后转换为dataframe类型存储


image.png


2.1.2 从ndarrays或lists的字典创建

image.png


不加index,默认数字序列


image.png


image.png


行标签,column如果和字典的键不对应,那么就会为空,这个是需要注意的


image.png


2.1.3 从结构化或成对的array/list创建

image.png

image.png


三维数组进行,数据表展示,就是这样的


image.png


2.1.3 从字典的列表创建

image.png


2.2 变量选择、添加和删除

image.png

image.png

这里交代了数据表里面一般拼接,增加和赋值操作


image.png


df['字段']=pd.Series([填充字段],index=[列标签]),可以达到对数据表的增加,在特定的列索引上面添加数据


image.png

image.png


删除并显示值,该列数据


image.png

对某一列删除操作

image.png


会根据索引来进行匹配,没有匹配到索引的,将会填充为NaN


image.png



相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
3月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
3月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
114 0
|
5月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
148 1
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
83 2

热门文章

最新文章

推荐镜像

更多