基于阿里云函数计算FC开发疫情数据统计推送

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 疫情数据统计推送基于Python和阿里云函数计算FC开发。实现了使用Python爬取获得疫情数据并进行整理,使用函数计算配合定时触发器,每天定时推送全国疫情数据到企业微信。

什么是Serverless?

在《Serverless Architectures》中对 Serverless 是这样子定义的:

Serverless was first used to describe applications that significantly or fully incorporate third-party, cloud-hosted applications and services, to manage server-side logic and state. These are typically “rich client” applications—think single-page web apps, or mobile apps—that use the vast ecosystem of cloud-accessible databases (e.g., Parse, Firebase), authentication services(e.g., Auth0, AWS Cognito), and so on. These types of services have been previously described as “(Mobile) Backend as a service", and I use “BaaS” as shorthand in the rest of this article. Serverless can also mean applications where server-side logic is still written by the application developer, but, unlike traditional architectures, it’s run in stateless compute containers that are event-triggered, ephemeral (may only last for one invocation), and fully managed by a third party. One way to think of this is “Functions as a Service” or “FaaS”.(Note: The original source for this name—a tweet by @marak—isno longer publicly available.) AWS Lambda is one of the most popular implementations of a Functions-as-a-Service platform at present, but there are many others, too.

这样的描述我相信有很多小伙伴不明白,我们可以这样子来理解Serverless:

它的中文直译就是【无服务器】

目前对于 Serverless 有几种解读方法:

  • 在某些场景可以解读为一种软件系统架构方法,通常称为 Serverless 架构
  • 而在另一些情况下,又可以代表一种产品形态,称为 Serverless 产品

可以理解为Severless=FAAS+BAAS  即函数即服务 (Function as a Service)+后端即服务 (Backend as a Service)


一、成果介绍

 疫情数据统计推送基于Python和阿里云函数计算FC开发。实现了使用Python爬取获得疫情数据并进行整理,使用函数计算配合定时触发器,每天定时推送全国疫情数据到企业微信。


二、背景意义

 疫情防控常态化,在全球疫情不断加速蔓延态势下在短期内完全结束是不可能的,很有可能较长时期处于疫情防控的状态,这要求我们时刻保持警惕,及时了解疫情情况。疫情数据统计推送项目,顺应了此背景。企业员工每天打开手机微信就可以收到一条简约的推送,了解当日的疫情情况


三、优势和不足

 优势:相对各大媒体每日推送的疫情情况相比,此疫情数据统计推送更加简介,可以更快的获取到有效信息。使用了阿里云函数FC开发,维护方便,无需关注服务器等基础设施,可以根据企业微信推送的需求量自动扩缩容,而且成本极低。使用定时触发器,每天定时的触发程序,发送数据推送,无需人为干预。

 不足:文字单调,将在后期推出数据可视化版本。


四、作品展示

项目代码:

image.png

使用阿里云函数计算FC服务:

image.png

image.png

image.png

使用定时触发器:

image.png


最终效果:

image.png


五、代码实例

import requests,random,json
url ="https://c.m.163.com/ug/api/wuhan/app/data/list-total"def UserAgent(): #随机获取请求头    user_agent_list = ['Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1464.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.16 Safari/537.36',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.3319.102 Safari/537.36',
'Mozilla/5.0 (X11; CrOS i686 3912.101.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.93 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1667.0 Safari/537.36',
'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:17.0) Gecko/20100101 Firefox/17.0.6',
'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1468.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2224.3 Safari/537.36',
'Mozilla/5.0 (X11; CrOS i686 3912.101.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36']
UserAgent={'User-Agent': random.choice(user_agent_list)}
    return UserAgent
def Get(arg1,arg2): #获取疫情    url_json = requests.get(url=url,headers=UserAgent()).json()
    today_confirm = str(url_json['data']['chinaTotal']['today']['confirm'])#全国累计确诊较昨日新增    today_input =str(url_json['data']['chinaTotal']['today']['input'])#全国较昨日新增境外输入    today_storeConfirm = str(url_json['data']['chinaTotal']['today']['storeConfirm'])#全国现有确诊较昨日    today_dead =str(url_json['data']['chinaTotal']['today']['dead'])#累计死亡较昨日新增    today_heal = str(url_json['data']['chinaTotal']['today']['heal'])#累计治愈较昨日新增    today_incrNoSymptom = str(url_json['data']['chinaTotal']['extData']['incrNoSymptom'])#无症状感染者较昨日    total_confirm = str(url_json['data']['chinaTotal']['total']['confirm'])  # 全国累计确诊    total_input = str(url_json['data']['chinaTotal']['total']['input'])  # 境外输入    total_dead = str(url_json['data']['chinaTotal']['total']['dead'])  # 累计死亡    total_heal = str(url_json['data']['chinaTotal']['total']['heal'])  # 累计治愈    total_storeConfirm = str(url_json['data']['chinaTotal']['total']['confirm'] - url_json['data']['chinaTotal']['total']['dead'] - url_json['data']['chinaTotal']['total']['heal'])  # 全国现有确诊    total_noSymptom = str(url_json['data']['chinaTotal']['extData']['noSymptom'])#无症状感染者    lastUpdateTime = url_json['data']['lastUpdateTime']#截止时间    data ='-' * 6+'全国疫情数据实时统计'+'-' * 5+'\n统计截至时间:'+ lastUpdateTime +'\n'+'-' * 27+'\n'+ \
'  累计确诊:'+ total_confirm +' ; '+'较昨日:'+ today_confirm + \
'\n  现有确诊:'+ total_storeConfirm +' ; '+'较昨日:'+ today_storeConfirm + \
'\n  累计死亡:'+ total_dead +' ; '+'较昨日:'+ today_dead + \
'\n  累计治愈:'+ total_heal +' ; '+'较昨日:'+ today_heal + \
'\n  境外输入:'+ total_input +' ; '+'较昨日:'+ today_input + \
'\n  无症状感染者:'+ total_noSymptom +' ; '+'较昨日:'+ today_incrNoSymptom
    print(data)
    HtmlPuch_server(data)
def HtmlPuch_server(data):
    url_wx ="https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key=3b4bd7fa-4063-477f-bbc6-0fe767c52fdf"    headers = {"Content-Type": "text/plain"}
    push_data ={
"msgtype": "text",
"text": {
"content":data
                    }
                }
    html = requests.post(url_wx,headers=headers,json=push_data)
    print(html.text)
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
2月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
139 13
|
2月前
|
存储 人工智能 运维
正式收官!阿里云函数计算携手优酷,用 AI 重塑影视 IP 创新边界
近日,阿里云联合优酷发起的 Create@影视 IP x AI 应用创新大赛,将网剧《少年白马醉春风》这一热门影视 IP 与阿里云 AI 技术相结合,由阿里云函数计算提供 AIGC 技术支持参赛者基于网剧《少年白马醉春风》IP 或“少年江湖”精神内核,用 AI 生成角色场景设计、手办设计、破次元合照、数字人等多样化的作品。
114 10
|
10天前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
24 1
|
20天前
|
人工智能 弹性计算 运维
触手可及:阿里云函数计算助力AI大模型的评测
阿里云推出的面向AI服务器的功能计算(Functional Computing, FC),专为AI应用提供弹性计算资源。该服务支持无服务器部署、自动资源管理和多语言支持,极大简化了AI应用的开发和维护。本文全面评测了FC for AI Server的功能特性、使用体验和成本效益,展示了其在高效部署、成本控制和安全性方面的优势,并通过具体应用案例和改进建议,展望了其未来发展方向。
102 4
|
2月前
|
SQL 分布式计算 Serverless
阿里云 EMR Serverless Spark 版正式开启商业化
阿里云 EMR Serverless Spark 版正式开启商业化,内置 Fusion Engine,100% 兼容开源 Spark 编程接口,相比于开源 Spark 性能提升300%;提供 Notebook 及 SQL 开发、调试、发布、调度、监控诊断等一站式数据开发体验!
126 3
阿里云 EMR Serverless Spark 版正式开启商业化
|
28天前
|
监控 Serverless 云计算
探索Serverless架构:开发的未来趋势
【10月更文挑战第5天】Serverless架构,即无服务器架构,正逐渐成为云计算领域的热点。它允许开发者构建和运行应用程序而无需管理底层服务器。本文介绍了Serverless架构的基本概念、核心优势及挑战,并展示了其在事件驱动编程、微服务架构和数据流处理等场景中的应用。通过优化冷启动、使用外部存储等实战技巧,开发者可以更好地利用Serverless架构提升开发效率和应用性能。随着技术的成熟,Serverless将在未来软件开发中扮演重要角色。
|
2月前
|
人工智能 运维 大数据
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
87 2
|
2月前
|
Cloud Native 关系型数据库 Serverless
基于阿里云函数计算(FC)x 云原生 API 网关构建生产级别 LLM Chat 应用方案最佳实践
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
340 12
|
3月前
|
Serverless API 异构计算
函数计算产品使用问题之修改SD模版应用的运行环境
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
3月前
|
运维 Serverless 网络安全
函数计算产品使用问题之通过仓库导入应用时无法配置域名外网访问,该如何排查
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。