【图像重建】基于布雷格曼迭代(bregman alteration)算法集合ART算法实现CT图像重建附matlab代码

简介: 【图像重建】基于布雷格曼迭代(bregman alteration)算法集合ART算法实现CT图像重建附matlab代码

1 简介

Fluorescence diffuse optical tomography (fDOT) is a noninvasive imaging technique that makes it possible to quantify the spatial distribution of fluorescent tracers in small animals. fDOT image reconstruction is commonly performed by means of iterative methods such as the algebraic reconstruction technique (ART). The useful results yielded by more advanced l1-regularized techniques for signal recovery and image reconstruction, together with the recent publication of Split Bregman (SB) procedure, led us to propose a new approach to the fDOT inverse problem, namely, ART-SB. This method alternates a cost-efficient reconstruction step (ART iteration) with a denoising filtering step based on minimization of total variation of the image using the SB method, which can be solved efficiently and quickly. We applied this method to simulated and experimental fDOT data and found that ART-SB provides substantial benefits over conventional ART.

2 部分代码

% Demo_ART_SB_Reconstruction.m% % Demo for a novel iterative reconstruction method that alternates a% computationally efficient linear solver (ART) with a fast denoising step% based on the Split Bregman formulation and that is used to reconstruct% fluorescence diffuse optical tomography data, as in the paper J% Chamorro-Servent, J F P J Abascal, J Aguirre, S Arridge, T Correia, J% Ripoll, M Desco, J J Vaquero. Use of Split Bregman denoising for% iterative reconstruction in fluorescence diffuse optical tomography. J% Biomed Opt, 18(7):076016, 2013. http://dx.doi.org/10.1117/1.JBO.18.7.076016       % % This work proposes to combine computationally efficient solver and% denoising steps with the potential to handle large scale problems in a% fast an efficient manner. Here we combine Algebraic Reconstruction% Technique (ART) and Split Bregman denoising but these methods can be% substituted by the method of choice. %% Our particular choices are explained as follows: %    ART has been widely used in tomography to handle large data sets, as% it can work with one data point (projection) at a time. % %    The Split Bregman formulation allows to solve the total variation% denoising problem in a fast and computationally efficient way. At each% iteration the solution is given by analytical formulas. A linear system  % can be solved in the Fourier domain, keeping the size of the problem (the% Hessian) equal to the number of voxels in the image, or by using% Gauss-Seidel method, which exploits the block diagonal structure of the% Hessian. %% In this demo we solve the image reconstruction problem of fuorescence% diffuse optical tomography but it can be applied to other imaging% modalities. %% % If you use this code, please cite Chamorro-Servent et al. Use of Split% Bregman denoising for iterative reconstruction in fluorescence diffuse% optical tomography. J Biomed Opt, 18(7):076016, 2013.% http://dx.doi.org/10.1117/1.JBO.18.7.076016        %% Judit Chamorro-Servent, Juan FPJ Abascal, Juan Aguirre% Departamento de Bioingenieria e Ingenieria Aeroespacial% Universidad Carlos III de Madrid, Madrid, Spain% juchamser@gmail.com, juanabascal78@gmail.com, desco@hggm.es % READ SIMULATED DATA % Load data, Jacobian matrix and target imageload('DataRed','data','JacMatrix','uTarget');%% Replace the previous line by the following for a larger matrix size% load('Data','data','JacMatrix','uTarget');% but it requires to download data set from the following link: % https://www.dropbox.com/s/461ub2ps0ur8uvd/Data.mat?dl=0% Actually the reduced Jacobian matrix (from DataRed), 700x4000, has been% obtained from a larger matrix (from Data), 6561x4000, by random selection% of rows, providing similar results!  [nr nc]     = size(JacMatrix);% Display target image in the discretized domainN           = [20 20 10];   x           = linspace(-10,10,N(1));y           = linspace(-10,10,N(2));z           = linspace(0,10,N(3));[X,Y,Z]     = meshgrid(x,y,z);% Uncomment below to get a plot of all slices% h           = Plot2DMapsGridSolution(reshape(uTarget,N),X,Y,Z,3); colorbar;rand('seed',0);% Add Gaussian noisedata       = data + 0.01*max(data)*randn(length(data),1);% Randomized index of Jacobian rows for ART reconstruction% indRand     = randperm(length(data));% indRand     = 1:nr; % Uncomment to remove randomized index% -------------------------------------------------------------------------% ART%% It requires selecting few parameters: %    numIterART = number of iterations. The more iterations the better fit% of the data (in this case it converges in 30 iterations) %    relaxParam = relaxation parameter (between 0 and 1). Choose 0.1 to% remove noise and 0.9 to get a closer fit of the datanumIterART  = 30;   % relaxParam  = 0.1;u0          = zeros(nc,1);fprintf('Solving ART reconstruction ... (it takes around 1 s)\n');tic; % uART = ARTReconstruction(JacMatrix,data,relaxParam,numIterART,u0); % The following version runs 3-4 times faster; must try with larger% matrices to assess the differenceuART = ARTReconstruction_Fast(JacMatrix,data,relaxParam,numIterART,u0); tocuART     = reshape(uART,N);%  h = Plot2DMapsGridSolution(uART,X,Y,Z,3); colorbar;       % -------------------------------------------------------------------------% ART-SB  %% It requres selecting the following paramters for ART and Split Bregman % denoising:   %    ART (see previous section). Here we provide high relaxation for a% better fit of the data, as noise will be removed in the denoising step) %%    SPLIT BREGMAN DENOISING:% Split Bregman parameters (mu, lambda, alpha) allow to tune the algorithm% if needed but it is generally quite robust and selecting all parameters% to 1 (or as suggested in the paper) works fine. Then, the only parameters% that need to be chosen are the number of iterations %%    mu     = weight of the fidelity term. (Generally 0.1 to 1 works fine;%    see the paper for more details). The larger the more weight to the%    noisy image%    lamdba = weight of the functionals that impose TV constraints. The% larger the higher the regularization. (Usually chosen larger than mu and% any value around 1 works fine) %    alpha  = the weight of the functional that imposes TV sparsity% (L1-norm). No need to tune this parameter, value 1 should work%    nInner = Number of inner iterations that impose TV constraints. The% higher the number of iterations the more is imposed the TV constraint%    nOuter = Number of outer iterations that impose data fidelity% constraint. Choose this larger than 1 (2 works fine), as TV may provide% an output image with lower constrast and the Bregman iteration can% correct for that. numIter     = 30;numIterART  = 10;      relaxParam  = 0.9;uARTSB      = zeros(N);mu          = 0.3;lambda      = 2*mu;alpha       = 1;nInner      = 5;nOuter      = 2; % indRand = randperm(length(data));fprintf('Solving ART-SB reconstruction ... (it takes around 12 s)\n');h = waitbar(0,'Solving ART-SB reconstruction') ;ticfor it = 1:numIter    % ART reconstruction step: Iterative linear solver    sol = ARTReconstruction_Fast(JacMatrix,data,relaxParam,numIterART,uARTSB(:));     %sol = ARTReconstruction(JacMatrix,data,relaxParam,numIterART,uARTSB(:));     solGrid     = reshape(sol,N);       % SB denoising step    uARTSB      = TV_SB_denoising_3D(solGrid,mu,lambda,alpha,nInner,nOuter);        % Uncomment below to do 2D slice-by-slice smoothing instead. It takes    % similar time but it could be parallelized, which can be faster in some    % applications for large scale problems (now SB denoising takes less    % than a second), by changing the for to a parfor loop  %     for iz = 1:N(3)%         uARTSB(:,:,iz) = TV_SB_denoising_2D(solGrid(:,:,iz),mu,lambda,nInner,nOuter);%     end    % Compute solution error norm    err(it) = norm(uARTSB(:)-uTarget(:))/norm(uTarget(:));        waitbar(it/numIter);end % ittocclose(h);% Display resultsfigure; plot(err); ylabel('Solution error'); xlabel('Number of iterations');title('Convergence of ART-SB');% Target imagePlot2DMapsGridSolution(reshape(uTarget,N),X,Y,Z,3); set(gcf,'name','TARGET','numbertitle','off'); colormap gray;% Reconstructed images0Plot2DMapsGridSolution(uART,X,Y,Z,3); set(gcf,'name','ART reconstruction','numbertitle','off') colormap gray;Plot2DMapsGridSolution(uARTSB,X,Y,Z,3); set(gcf,'name','ART-SB reconstruction','numbertitle','off') colormap gray;  % -------------------------------------------------------------------------    %

3 仿真结果

4 参考文献

[1]马敏, 王涛, 范广永. 基于分割Bregman迭代的内-外置电极电容层析成像[J]. 科学技术与工程, 2018, 018(032):212-216.

[2] Chamorro-Servent J ,  Abascal J F ,  Aguirre J , et al. Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography[J]. Journal of Biomedical Optics, 2013, 18.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
24天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
142 3
|
18天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
18天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
24天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
24天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
24天前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
|
29天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
29天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
147 14
|
24天前
|
机器学习/深度学习 算法 安全
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
106 2
|
29天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)

热门文章

最新文章