《贝叶斯思维:统计建模的Python学习法》一第1章 贝叶斯定理1.1 条件概率

简介:

本节书摘来自异步社区《贝叶斯思维:统计建模的Python学习法》一书中的第1章,第1.1节,作者【美】Allen B. Downey,更多章节内容可以访问云栖社区“异步社区”公众号查看

第1章 贝叶斯定理

贝叶斯思维:统计建模的Python学习法

1.1 条件概率

所有贝叶斯统计的方法都基于贝叶斯定理,如果有条件概率的学习基础,意识到这一点很自然。因此我们会从概率、条件概率开始,然后到贝叶斯定理,最后讨论贝叶斯统计的内容。

概率表示为0和1之间的数字(包括0和1),含义是某一事件或者预测行为的可信程度,1值表示“事件为真”的情形肯定发生,或表述为预测成真;而0值则表示“事件为真”这一情形为假。

其他中间值表示确定性的程度。例如,0.5通常也会写成50%,意味着一个预测结果发生和不发生有同等可能性。例如,在一个掷硬币事件中,人像面(正面)朝上的概率就非常接近50%。

条件概率是带有某些(前提条件)背景约束下的概率问题。例如,我想了解一下明年自己心脏病发作的可能性。根据疾病控制中心的数据,每年大约有78.5万名美国人罹患心脏病(http://www.cdc.gov//heartdisease/fact.html)。

美国约有3.11亿人,假设随机挑选一个美国人,那么其在明年心脏病发作的概率大约是0.3%。

但就具体个例而言,“我”可不是那个被随意选中的美国人。流行病学家们已经明确了多种影响心脏病发作的风险因素,根据这些因素我的风险则有可能高于或低于平均值。

本人男,45 岁,有临界高胆固醇,这些因素增加了我发病的可能性;然而,血压低、不抽烟这些因素则降低了可能性。

把上面这些条件输入在线计算器http://hp2010.nhlbihin.net/atpiii/calculator.asp,我发现自己明年心脏病发作的风险约为0.2%,低于全国平均水平。这个值就是一个条件概率,因为它是基于一系列前提因素的,这些因素构成了我患心脏病的“条件”。

通常条件概率的记号是p(A|B),表示在给定B条件下A事件发生的概率。在这个例子中,A表示我明年罹患心脏病带的概率,而B表示了上面所罗列的条件。

相关文章
|
8月前
|
Python
掌握Python装饰器:轻松统计函数执行时间
掌握Python装饰器:轻松统计函数执行时间
504 76
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
1086 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
864 15
|
机器学习/深度学习 数据采集 算法
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
1338 7
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
472 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
数据可视化 Serverless Python
Python小事例—质地不均匀的硬币的概率统计
Python小事例—质地不均匀的硬币的概率统计
325 0
|
开发者 Python
Python类和子类的小示例:建模农场
Python类和子类的小示例:建模农场
233 0
|
程序员 Python
Python控制结构:条件语句和循环详解
【4月更文挑战第8天】本文介绍了Python的两种主要控制结构——条件语句和循环。条件语句包括`if`、`elif`和`else`,用于根据条件执行不同代码块。`if`检查条件,`else`提供替代路径,`elif`用于多个条件检查。循环结构有`for`和`while`,前者常用于遍历序列,后者在满足特定条件时持续执行。`for`可结合`range()`生成数字序列。`while`循环适用于未知循环次数的情况。循环控制语句`break`和`continue`能改变循环执行流程。理解和熟练运用这些控制结构是Python编程的基础。
380 4
|
Java 程序员 C++
Python教程第4章 | 条件语句、循环语句和函数
Python if条件语句,for循环语句、Python函数
659 1
Python教程第4章 | 条件语句、循环语句和函数

推荐镜像

更多