Prometheus 使用Python推送指标数据到Pushgateway

简介: Prometheus 使用Python推送指标数据到Pushgateway

使用Python推送指标数据到Pushgateway

需求描述

实践环境

Python 3.6.5

Django 3.0.6

prometheus-client 0.11.0

代码实现

!/usr/bin/env python
-*- coding:utf-8 -*-
from prometheus_client import CollectorRegistry, Gauge, push_to_gateway
if __name__ == '__main__':
    registry = CollectorRegistry()
    labels = ['req_status', 'req_method', 'req_url']
    g_one = Gauge('requests_total', 'url请求次数', labels, registry=registry)
    g_two = Gauge('avg_response_time_seconds', '1分钟内的URL平均响应时间', labels, registry=registry)
    g_one.labels('200','GET', '/test/url').set(1) #set设定值
    g_two.labels('200','GET', '/test/api/url/').set(10) #set设定值
    push_to_gateway('http://162.13.0.83:9091', job='SampleURLMetrics', registry=registry)

注意:采用这种方式是无法为指标数据提供数据生成时间戳的,具体下文说明

查看运行结果

浏览器访问推送网关地址http://162.13.0.83:9091,如下

关于时间戳(timestamp)

如果你在 t1 时刻推送Metric,你可能认为普罗米修斯会“刮取(scrap)”这些指标,并使用相同时间戳 t1 作为对应时序数据的时间戳,然而,普罗米修斯不会这样做,它会把从推送网关(Pushgateway)“刮取”数据时的时间戳当作指标数据对应的时间戳。为什么会这样?

在普罗米修斯的世界观中,一个Metric可以在任何时候被刮取,一个无法被”刮取”的Metric基本上是不存在了。对此,普罗米修斯多少还是有点“容忍”的,但是如果它不能在 5 分钟内获得一个Metric的任何样本,那么它就会表现得好像该Metric不再存在一样。为了防止这种情况发生,实际上是使用Pushgateway的原因之一。Pushgateway将使你的临时job在任何时候都可以被刮取,也就是说任何时刻都可以采集到你推送的数据。将推送时间附加为时间戳将无法达到这一目的,因为在最后一次推送5分钟之后,普罗米修斯会认为你的Metric已经过时,就好像它再也不能被“刮取”一样。(普罗米修斯只能识别每个样本的一个时间戳,无法区分“推送时间”和“刮取时间”。)

由于没有任何让附加不同的时间戳有意义的场景,并且许多用户试图错误地这样做(尽管没有客户端库支持),Pushgateway拒绝任何带有时间戳的推送。

为了更容易对失败的推送器或最近未运行的Pusher发出警报,Pushgateway将在push_time_secondspush_failure_time_secondsMetric中给每个组添加最后一次成功和失败的POSTPUT的Unix时间戳。这将覆盖使用该名称推送的任何Metric。两个Metric的值均为零表示该组从未见过成功或失败的POSTPUT

目录
相关文章
|
4月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
2576 1
|
4月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
575 0
|
4月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
4月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
6月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
560 1
|
6月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
5月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
5月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
176 0
|
7月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
4月前
|
存储 Prometheus 监控
136_生产监控:Prometheus集成 - 设置警报与指标选择与LLM部署监控最佳实践
在大语言模型(LLM)部署的生产环境中,有效的监控系统是确保服务稳定性、可靠性和性能的关键。随着LLM模型规模的不断扩大和应用场景的日益复杂,传统的监控手段已难以满足需求。Prometheus作为当前最流行的开源监控系统之一,凭借其强大的时序数据收集、查询和告警能力,已成为LLM部署监控的首选工具。

推荐镜像

更多