带你通关全栈树型结构设计:从数据库到前端

简介: 今天咱们要讨论的树,它不是现实结构的树,也不是数据结构要讨论的树,而是「从业务视角抽象出来的树形结构」。

树状结构的业务


今天咱们要讨论的树,它不是现实结构的树,也不是数据结构要讨论的树,而是从业务视角抽象出来的树形结构

树形结构可以用在很多的业务上,比如组织结构中的上下级关系、商品分类管理、文件系统、后台系统中的页面和组件关系等等。

下面请系好安全带,我们将从数据库设计、设计模式、前端组件三个方面来介绍关于树状结构设计的方方面面,助你通关全栈树状结构!


数据库设计


树状结构最简单最常用的方法其实是直接存储在JSON里面。现在有很多主流的NoSQL库,比如MongoDB等,而且也有很多关系型数据库也开始支持JSON存储,比如MySQL。

使用JSON的好处是,维护整棵树比较方便,直接整存整取就好了,不用去管中间是怎么修改的,怎么映射到数据库的。但缺点是不太高效,比如想要编辑某个叶子节点,查询和更新都没有纯关系型数据那么方便。所以如果你的业务足够简单,数据量也很小,可以使用JSON。否则,还是推荐使用关系型数据来实现。

那如何在关系型数据应该如何设计,才能高效地存储和操作树形结构呢?我们用下图来作为例子:

区域关系

ps:这里假设有多棵树,根节点是亚洲、美洲等

我们首先想到的是用parent_id, 这个字段用来存储“父节点”,根节点的parent_id为0,这样就可以通过递归查询得到一棵树。

很明显,如果只是一个parent_id,我们如果想获得一棵树,当这棵树的深度比较深时,我们需要查询很多次数据库,效率非常低。那有没有什么办法可以一次性把整棵树都查出来呢?我们尝试加一个root_id,用来表示这棵树的根节点。

id parent_id root_id name
1 0 0 亚洲
2 0 0 美洲
3 1 1 中国
4 1 1 日本
5 1 1 韩国
6 3 1 四川省

那么问题来了,如果是想查询某一个节点的子树,该怎么做呢?是不是觉得不太方便?下面我们推荐另外一种表示方式:full id path,每个节点记录下从根节点到自己的id路径,如下:

id full_id_path name
1 /1 亚洲
2 /2 美洲
3 /1/3 中国
4 /1/4 日本
5 /1/5 韩国
6 /1/3/6 四川省
7 /1/3/6/7 成都市

这样如果我们想查询一棵树,只需要使用like语句前缀匹配就行了。比如想查询“四川省”下面有哪些市:

SELECT * FROM table 
WHERE full_id_path like "/1/3/6%";
复制代码

如果是更新了一棵树中节点的关系,只需要维护好这个节点及其子节点的full_id_path字段就行了。一般来讲,这种full id path设计能够满足绝大多数树形结构的业务要求。

但如果你的id是UUID类型的,如果深度比较高,那full_id_path字段就会比较长,且并不易读。这个时候我们建议使用一个唯一的,有业务意义的code来表示路径,字段名改为叫full_path。比如要表示成都市:

'/Asian/China/SiChuan/Chengdu'

数据库的设计还是要根据业务来,没有绝对的银弹。有时候,我们会加上level字段表示每个节点在树中的层级位置,用于在应用代码层面更方便、高效地拼接树


设计模式 - 组合模式

接下来我们介绍在代码层面,如何去优雅地使用树形结构。其实前辈们已经为我们总结出了一种非常优秀的设计模式——组合模式,又称为“部分整体模式”,专门针对树形结构。

组合模式的精髓在于,你不用把一棵树“树”的概念和一个单独的“节点”分开处理,而是都视为同一种对象来处理。下面我们依然以上面的区域关系为例,来介绍组合模式如何使用。

首先我们来看一个经典的组合模式中的三个概念:

  • Component:抽象接口,定义组合的外观行为;
  • Composite:容器对象,表示“有孩子”的节点;
  • Leaf:叶子节点,表示“没有孩子”的节点。

下面上Java代码实现:

/**
 * 组合模式抽象接口
 */
public interface LocationComponent {
    String getPath();
    void display();
    void add(LocationComponent component);
    void remove(LocationComponent component);
    Map<String, LocationComponent> getChildren();
}
/**
 * 容器对象,表示有孩子的节点
 */
public class LocationComposite implements LocationComponent {
    private Long id;
    private String name;
    private String fullPath;
    private Map<String, LocationComponent> children = new HashMap<>();
    @Override
    public String getPath() {
        return fullPath;
    }
    @Override
    public void display() {
        System.out.println(name);
    }
    @Override
    public void add(LocationComponent component) {
        component.fullPath = this.fullPath + "/" + component.id;
        children.put(component.getPath(), component);
    }
    @Override
    public void remove(LocationComponent component) {
        children.remove(component.getPath());
    }
    @Override
    public Map<String, LocationComponent> getChildren() {
        return children;
    }
}
/**
 * 叶子节点
 */
public class LocationLeaf implements LocationComponent {
    private Long id;
    private String name;
    private String fullPath;
    @Override
    public String getPath() {
        return fullPath;
    }
    @Override
    public void display() {
        System.out.println(name);
    }
    @Override
    public void add(LocationComponent component) {
        throw  new UnsupportedOperationException();
    }
    @Override
    public void remove(LocationComponent component) {
        throw  new UnsupportedOperationException();
    }
    @Override
    public Map<String, LocationComponent> getChildren() {
        throw  new UnsupportedOperationException();
    }
}

那么问题来了,我有必要把节点分成Leaf和Composite吗?Leaf也实现Component接口,但抛那么多UnsupportedOperationException意义何在?我为什么不用同一个对象来表示Composite和Leaf?

其实从这里我们就可以看到,经典的设计模式也不是银弹。我们学设计模式,学的是思想,而不是固定的套路,最终还是要结合业务。比如上面的代码,明显就不适合我们的“区域”业务,比如我想在高新区下面再细分“街道”,这个代码就很难扩展了。

但如果你的业务是做一个文件系统,我们可以很明显的知道,文件和文件夹的区别。文件就是一个Leaf,它必然不支持add、remove、getChildren等操作,而文件夹是必须有这些操作的,是一个Composite。这个时候就可以用上面的代码设计了。同时,上面的Map也可以换成List等其它容器类型。

所以我们要活学活用,针对我们的区域业务,可以直接用一个Component来表示:

/**
 * 区域接口,可扩展成无限深度
 */
public class AreaComponent {
    private Long id;
    private String name;
    private String fullPath;
    private Map<String, AreaComponent> children = new HashMap<>();
    public String getPath() {
        return fullPath;
    }
    public void display() {
        System.out.println(name);
    }
    public void add(AreaComponent component) {
        component.fullPath = this.fullPath + "/" + component.id;
        children.put(component.getPath(), component);
    }
    public void remove(AreaComponent component) {
        children.remove(component.getPath());
    }
    public Map<String, AreaComponent> getChildren() {
        return children;
    }
}


前端设计

作为一个有志向的全栈工程师,当然不能只满足于数据库和后端层面。前端组件代码也要自己上手~

相信现在的前端小伙伴们都应该熟悉一种或多种令人闻风丧胆的“三大”前端主流框架。现在的前端框架都推荐“组件化”开发,把页面分成一个一个小的组件。很明显,组件层层嵌套,其实本质上也是一个树的形式,最终也会渲染出一个DOM树对象。

组件树

我们以Vue为例,对于上文提到的区域划分业务,如果后端返回的是一条条带有full_path的扁平数据,前端应该如何优雅地构建基于业务的树形结构呢?答案就是使用递归组件

递归组件,简单来说就是在组件中内使用组件本身, 对于Vue来说,其核心就在于使用name字段。效果大概是这样:

请忽略我的审美

还是按照惯例,上代码。先来一个表示“区域”的组件:

<template>
  <div class="node" :style="{paddingLeft: self.level * 20 + 'px'}">
    <p>{{self.name}}</p>
    <div v-for="child in children" :key="child.id">
      <Area v-if="`children.length != 0`" :self="child" :all="all"/>
    </div>
  </div>
</template>
<script>
export default {
  name: 'Area',
  props: {
    self: Object,
    all: Array
  },
  computed: {
    children() {
      // 根据full_path和level,过滤出子组件
   return this.all.filter(item => item.full_path.startsWith(this.self.full_path) && item.level == this.self.level + 1);
    }
  }
}
</script>

入口:

<template>
  <div id="app">
    <Area :self="all[0]" :all="all" />
  </div>
</template>
<script>
import Area from './components/Area.vue'
export default {
  name: 'App',
  components: {
    Area
  },
  data() {
    return {
      // 所有数据
      all: [
        { id: 1, level: 1, full_path: '/1', name: '亚洲' },
        { id: 2, level: 1, full_path: '/2', name: '美洲' },
        { id: 3, level: 2, full_path: '/1/3', name: '中国' },
        { id: 4, level: 2, full_path: '/1/4', name: '日本' },
        { id: 5, level: 3, full_path: '/1/3/5', name: '四川省' },
        { id: 6, level: 3, full_path: '/1/3/6', name: '浙江省' },
        { id: 7, level: 4, full_path: '/1/3/5/7', name: '成都市' }
      ]
    }
  }
}
</script>

当然了,这只是其中一种写法,你也可以在外面组装好一个带children的对象传进去。


思考:计算和组装放在前端还是后端?

又到了我们一天一度的前后端撕逼环节。作为一个假装是全栈的后端同学来说,笔者认为针对这个问题,我有必要说一句公道话:在前端组装比较好。

众所周知,在当今前端越来越繁荣的大环境下,前端承担着越来越重要的角色,有很多数据的计算也会放在前端。针对于这种树状结构的拼装来说,放在前后端其实都可以的。但是放在前端有一个好处,那就是可以将计算消耗的时间和资源从服务端转移到客户端

现在的后端架构也越来越倾向于读写分离,所以在读的时候,多半不会进行太多的操作,不需要组装整棵树。这种情况下,建议直接把数据返回前端,由前端来组装成整棵树。

当然,这只是一个建议,具体在什么时机组装,还是由业务规则以及团队商量决定~

好了,以上就是从数据库到前端的树形结构实现,有任何问题欢迎留言讨论~

目录
相关文章
|
1月前
|
Cloud Native 前端开发 JavaScript
前端开发者必看:不懂云原生你就OUT了!揭秘如何用云原生技术提升项目部署与全栈能力
【10月更文挑战第23天】随着云计算的发展,云原生逐渐成为技术热点。前端开发者了解云原生有助于提升部署与运维效率、实现微服务化、掌握全栈开发能力和利用丰富技术生态。本文通过示例代码介绍云原生在前端项目中的应用,帮助开发者更好地理解其重要性。
85 0
|
2月前
|
JavaScript 前端开发 Docker
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
在使用 Deno 构建项目时,生成的可执行文件体积较大,通常接近 100 MB,而 Node.js 构建的项目体积则要小得多。这是由于 Deno 包含了完整的 V8 引擎和运行时,使其能够在目标设备上独立运行,无需额外安装依赖。尽管体积较大,但 Deno 提供了更好的安全性和部署便利性。通过裁剪功能、使用压缩工具等方法,可以优化可执行文件的体积。
151 3
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
|
2月前
|
JavaScript 前端开发 测试技术
前端全栈之路Deno篇(五):如何快速创建 WebSocket 服务端应用 + 客户端应用 - 可能是2025最佳的Websocket全栈实时应用框架
本文介绍了如何使用Deno 2.0快速构建WebSocket全栈应用,包括服务端和客户端的创建。通过一个简单的代码示例,展示了Deno在WebSocket实现中的便捷与强大,无需额外依赖,即可轻松搭建具备基本功能的WebSocket应用。Deno 2.0被认为是最佳的WebSocket全栈应用JS运行时,适合全栈开发者学习和使用。
139 7
|
2月前
|
存储 前端开发 JavaScript
前端的全栈之路Meteor篇(四):RPC方法注册及调用-更轻量的服务接口提供方式
RPC机制通过前后端的`callAsync`方法实现了高效的数据交互。后端通过`Meteor.methods()`注册方法,支持异步操作;前端使用`callAsync`调用后端方法,代码更简洁、易读。本文详细介绍了Methods注册机制、异步支持及最佳实践。
|
2月前
|
前端开发 JavaScript 中间件
前端全栈之路Deno篇(四):Deno2.0如何快速创建http一个 restfulapi/静态文件托管应用及oak框架介绍
Deno 是由 Node.js 创始人 Ryan Dahl 开发的新一代 JavaScript 和 TypeScript 运行时,旨在解决 Node.js 的设计缺陷,具备更强的安全性和内置的 TypeScript 支持。本文介绍了如何使用 Deno 内置的 `Deno.serve` 快速创建 HTTP 服务,并详细讲解了 Oak 框架的安装和使用方法,包括中间件、路由和静态文件服务等功能。Deno 和 Oak 的结合使得创建 RESTful API 变得高效且简便,非常适合快速开发和部署现代 Web 应用程序。
125 2
|
2月前
|
JSON 分布式计算 前端开发
前端的全栈之路Meteor篇(七):轻量的NoSql分布式数据协议同步协议DDP深度剖析
本文深入探讨了DDP(Distributed Data Protocol)协议,这是一种在Meteor框架中广泛使用的发布/订阅协议,支持实时数据同步。文章详细介绍了DDP的主要特点、消息类型、协议流程及其在Meteor中的应用,包括实时数据同步、用户界面响应、分布式计算、多客户端协作和离线支持等。通过学习DDP,开发者可以构建响应迅速、适应性强的现代Web应用。
|
2月前
|
JavaScript 前端开发 Serverless
前端全栈之路Deno篇:Deno2.0与Bun对比,谁更胜一筹?可能Deno目前更适合serverless业务
在前端全栈开发中,Deno 2.0 和 Bun 作为新兴的 JavaScript 运行时,各自展现了不同的优势。Deno 2.0 重视安全性和多平台兼容性,尤其是对 Windows 的良好支持和原生 TypeScript 支持;而 Bun 则以卓越的性能和简便的开发体验著称,适合快速迭代的小型项目。两者在不同场景下各具特色,Deno 更适合企业级应用和serverless,Bun 则适用于追求速度的项目。
257 1
|
2月前
|
JSON 前端开发 数据格式
前端的全栈之路Meteor篇(五):自定义对象序列化的EJSON介绍 - 跨设备的对象传输
EJSON是Meteor框架中扩展了标准JSON的库,支持更多数据类型如`Date`、`Binary`等。它提供了序列化和反序列化功能,使客户端和服务器之间的复杂数据传输更加便捷高效。EJSON还支持自定义对象的定义和传输,通过`EJSON.addType`注册自定义类型,确保数据在两端无缝传递。
|
2月前
|
前端开发 安全 API
前端全栈之路Deno篇(三):一次性搞懂和学会用Deno 2.0 的权限系统详解和多种权限配置权限声明方式
本文深入解析了 Deno 2.0 的权限系统,涵盖主包和第三方包的权限控制机制,探讨了通过命令行参数、权限 API 和配置文件等多种权限授予方式,并提供了代码示例和运行指导,帮助开发者有效管理权限,提升应用安全性。
|
2月前
|
前端开发 JavaScript API
前端的全栈之路Meteor篇(完):关于前后端分离及与各框架的对比,浅析分离之下的潜在耦合
本文探讨了Meteor.js这一全栈JavaScript框架的特点与优势,特别是在前后端分离架构中的应用。Meteor通过共享数据结构和简化全栈开发流程,实现了前后端的紧密协作。文章还对比了其他全栈框架,如Next.js、Nuxt.js等,分析了各自的优势与适用场景,最后讨论了通过定义文档归属者和用户专有数据集简化后端构建及端云数据同步的方法。

热门文章

最新文章