Sentry 监控 - Snuba 数据中台架构(编写和测试 Snuba 查询)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: Sentry 监控 - Snuba 数据中台架构(编写和测试 Snuba 查询)

探索 Snuba 数据模型



为了构建 Snuba 查询,第一步是能够知道您应该查询哪个数据集,您应该选择哪些实体以及每个实体schema 是什么。


有关数据集实体的介绍,请参阅 Snuba 数据模型部分。

数据集可以在这个模块中找到。每个数据集都是一个引用实体的类。

系统中的实体列表可以通过 snuba entity 命令找到:


snuba entities list


会返回如下内容:


Declared Entities:
discover
errors
events
groups
groupassignee
groupedmessage
.....


一旦我们找到了我们感兴趣的实体,我们就需要了解在该实体上声明的 schemarelationship。相同的命令描述了一个实体


snuba entities describe groupedmessage


会返回:


Entity groupedmessage
    Entity schema
    --------------------------------
    offset UInt64
    record_deleted UInt8
    project_id UInt64
    id UInt64
    status Nullable(UInt8)
    last_seen Nullable(DateTime)
    first_seen Nullable(DateTime)
    active_at Nullable(DateTime)
    first_release_id Nullable(UInt64)
    Relationships
    --------------------------------
        groups
        --------------------------------
        Destination: events
        Type: LEFT
            Join keys
            --------------------------------
            project_id = LEFT.project_id
            id = LEFT.group_id


它提供列的列表及其类型以及与数据模型中定义的其他实体的关系。


准备对 Snuba 的查询



Snuba 查询语言称为 SnQL。它记录在 SnQL 查询语言部分。所以本节不赘述。

有一个 python sdk 可用于构建 Snuba 查询,它可以用于任何 Python 客户端,包括 Sentry。snuba-sdk。

查询表示为一个 Query 对象,如:


query = Query(
    dataset="discover",
    match=Entity("events"),
    select=[
        Column("title"),
        Function("uniq", [Column("event_id")], "uniq_events"),
    ],
    groupby=[Column("title")],
    where=[
        Condition(Column("timestamp"), Op.GT, datetime.datetime(2021, 1, 1)),
        Condition(Column("project_id"), Op.IN, Function("tuple", [1, 2, 3])),
    ],
    limit=Limit(10),
    offset=Offset(0),
    granularity=Granularity(3600),
)


有关如何构建查询的更多详细信息,请参见 sdk 文档。

一旦查询对象准备就绪,它就可以发送到 Snuba


使用 Sentry 向 Snuba 发送查询



查询 Snuba 时最常见的用例是通过 Sentry。本节说明如何在 Sentry 代码库中构建查询并将其发送到 Snuba


Sentry 导入了上述的 Snuba sdk。这是构建 Snuba 查询的推荐方法。

一旦创建了 Query 对象,Sentry 提供的 Snuba client api 就可以并且应该用于将查询发送到 Snuba


api 在这个模块中。它负责缓存、重试并允许批量查询。

该方法返回一个字典,其中包含响应中的数据和其他元数据:


{
    "data": [
        {
            "title": "very bad",
            "uniq_events": 2
        }
    ],
    "meta": [
        {
            "name": "title",
            "type": "String"
        },
        {
            "name": "uniq_events",
            "type": "UInt64"
        }
    ],
    "timing": {
        ... details ...
    }
}


data 部分是一个列表,每行一个字典。meta 包含响应中包含的的列表,其数据类型由 Clickhouse 推断。


通过 Web UI 发送测试查询



Snuba 具有可用于发送查询的最小 Web UI。您可以在本地运行 Snuba, 并且可以通过 http://localhost:1218/[DATASET NAME]/snql 访问 Web UI


微信图片_20220613002944.png


应该在 query 属性中提供 SnQL 查询,并且响应的结构与上一节中讨论的相同。


通过 curl 发送查询



Web UI 仅将 payload 作为 POST 发送。因此,使用 curl 或任何其他 HTTP 客户端可以实现相同的结果。


请求和响应格式



请求格式在上面截图中可见:

  • query 包含字符串形式的 SnQL 查询。
  • dataset 是数据集名称(如果尚未在 url 中指定。
  • debug 使 Snuba 在响应中提供详尽的统计信息,包括 Clickhouse 查询。
  • consistent 强制 Clickhouse 查询以单线程模式执行,并且如果 Clickhouse 表被复制,它将强制 Snuba 始终命中同一个节点。可以保证顺序一致性,因为这是消费者默认写入的节点。这是通过设置为 in_order 的负载平衡 Clickhouse 属性实现的。
  • turboTURBO_SAMPLE_RATE Snuba 设置中定义的查询设置采样率。它还可以防止 SnubaFINAL 模式应用于 Clickhouse 查询,以防在替换后需要保证正确的结果。


Snuba 可以使用 4http code 进行响应。200 表示成功的查询,如果查询无法正确验证,则为 400500 通常意味着与 Clickhouse 相关的问题(从超时到连接问题),尽管 Snuba 仍然无法提前识别一些无效查询。Snuba 有一个内部速率限制器,所以 429 也是一个可能的返回码。


成功查询的响应格式与上面讨论的相同。完整版本如下所示(在 debug 模式下)


{
    "data": [],
    "meta": [
        {
            "name": "title",
            "type": "String"
        }
    ],
    "timing": {
        "timestamp": 1621038379,
        "duration_ms": 95,
        "marks_ms": {
            "cache_get": 1,
            "cache_set": 4,
            "execute": 39,
            "get_configs": 0,
            "prepare_query": 10,
            "rate_limit": 4,
            "validate_schema": 34
        }
    },
    "stats": {
        "clickhouse_table": "errors_local",
        "final": false,
        "referrer": "http://localhost:1218/events/snql",
        "sample": null,
        "project_rate": 0,
        "project_concurrent": 1,
        "global_rate": 0,
        "global_concurrent": 1,
        "consistent": false,
        "result_rows": 0,
        "result_cols": 1,
        "query_id": "f09f3f9e1c632f395792c6a4bfe7c4fe"
    },
    "sql": "SELECT (title AS _snuba_title) FROM errors_local PREWHERE equals((project_id AS _snuba_project_id), 1) WHERE equals(deleted, 0) AND greaterOrEquals((timestamp AS _snuba_timestamp), toDateTime('2021-05-01T00:00:00', 'Universal')) AND less(_snuba_timestamp, toDateTime('2021-05-11T00:00:00', 'Universal')) LIMIT 1000 OFFSET 0"
}


timing 部分包含查询的时间戳持续时间。有趣的是,持续时间被分解为几个阶段:marks_ms


sql 元素是 Clickhouse 查询。

stats 字典包含以下 key


  • clickhouse_tablesnuba 在查询处理过程中选取的表。
  • final 表示 Snuba 是否决定向 Clickhouse 发送 FINAL 查询,这会迫使 Clickhouse 立即应用相关的合并(Merge Tree)。细节
  • sample 是应用的采样率。
  • project_rate 是查询时 Snuba 每秒收到的特定项目的请求数。
  • project_concurrent 是查询时涉及特定项目的并发查询数。
  • global_rateproject_rate 相同,但不专注于一个项目。
  • global_concurrentproject_concurrent 相同,但不专注于一个项目。
  • query_id 是此查询的唯一标识符。

查询验证问题通常采用以下格式:


{
    "error": {
        "type": "invalid_query",
        "message": "missing >= condition on column timestamp for entity events"
    }
}


Clickhouse 错误将具有类似的结构。type 字段将显示 clickhouse,该消息将包含有关异常的详细信息。与查询验证错误相反,在 Clickhouse 错误的情况下,实际执行了查询,因此存在为成功查询描述的所有时间和统计信息。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
7月前
|
监控 JavaScript 前端开发
在生产环境中测试和监控Vue项目的方法有哪些?
在生产环境中测试和监控Vue项目的方法有哪些?
93 4
|
6月前
|
监控 测试技术
局域网监控软件的自动化测试框架搭建(使用JUnit)
本文介绍了如何使用JUnit搭建局域网监控软件的自动化测试框架。通过创建测试类和编写测试用例,如连接测试和警报功能测试,确保软件功能的正确性。测试完成后,利用HTTP POST请求将监控数据自动提交到指定网站,实现数据的实时更新和追踪。这种方法能提升测试效率,保证软件质量和稳定性。
155 3
|
3月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
117 10
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
7月前
|
JSON 监控 测试技术
Groovy脚本编写员工上网行为监控自动化测试
本文介绍了如何使用Groovy脚本创建一个自动化工具来监控员工的网络活动。通过编写简单脚本记录员工访问的网站并打印信息,可进一步扩展为将数据保存至数据库。此外,通过设定定时任务,实现了每30分钟自动监控一次的功能。最后,展示了如何将监控数据转换为JSON格式并使用HTTP POST请求提交到网站,以实现数据的自动化上报,有助于企业保障网络安全、保护数据并提升工作效率。
178 5
|
4月前
|
监控 jenkins 测试技术
自动化测试中的“守护神”: 持续集成与代码质量监控
【8月更文挑战第31天】在软件开发的海洋里,自动化测试犹如一座灯塔,指引着项目向着高质量和高效率的方向前进。本文将深入探讨如何通过持续集成(CI)和代码质量监控相结合的方式,构建起一道坚固的防线,保障软件项目在快速迭代中不失方向。我们将一起探索这一过程中的关键实践,以及它们是如何相互作用,共同提升软件项目的可靠性和稳定性。
|
5月前
|
SQL
云架构数据倾斜问题之在SQL数据源读取查询时合并小文件如何解决
云架构数据倾斜问题之在SQL数据源读取查询时合并小文件如何解决
|
7月前
|
开发框架 监控 Java
深入探索Spring Boot的监控、管理和测试功能及实战应用
【5月更文挑战第14天】Spring Boot是一个快速开发框架,提供了一系列的功能模块,包括监控、管理和测试等。本文将深入探讨Spring Boot中监控、管理和测试功能的原理与应用,并提供实际应用场景的示例。
85 2
|
7月前
|
运维 监控 Linux
提升系统稳定性:Linux服务器性能监控与故障排查实践深入理解与实践:持续集成在软件测试中的应用
【5月更文挑战第27天】在互联网服务日益增长的今天,保障Linux服务器的性能和稳定性对于企业运维至关重要。本文将详细探讨Linux服务器性能监控的工具选择、故障排查流程以及优化策略,旨在帮助运维人员快速定位问题并提升系统的整体运行效率。通过实际案例分析,我们将展示如何利用系统资源监控、日志分析和性能调优等手段,有效预防和解决服务器性能瓶颈。
|
7月前
|
弹性计算 运维 监控
监控 HTTP 服务器的状态(测试返回码)
【4月更文挑战第28天】
76 0
|
7月前
|
监控 测试技术 API
自动化测试工具与电脑桌面监控软件的集成:Selenium与Python的无缝整合
在当今数字化时代,软件质量保证是每个软件开发团队都必须面对的重要挑战之一。自动化测试工具和电脑桌面监控软件的结合,为开发团队提供了一种有效的方式来确保软件的稳定性和性能。本文将介绍如何利用Python编程语言中的Selenium库,与桌面监控软件进行无缝整合,以实现对应用程序的自动化测试和桌面监控。
290 5
下一篇
DataWorks