自然语言处理预训练模型招标中标信息抽取-高级版服务 Quick Start

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。可用于搭建内容搜索、内容推荐、舆情识别及分析、文本结构化、对话机器人等智能产品。NLP自学习平台提供了一些预训练的特定领域模型服务。例如:商品评价解析服务、新闻层次分类服务、中文简历抽取、英文简历抽取等,且无需自主标注训练,直接调用API即可使用。本文将使用Java SDK演示招标中标信息抽取-高级版服务的快速调用以供参考。

使用前提:服务开通与资源包购买

操作步骤:

1.添加pom依赖

   <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-core</artifactId>
            <version>4.5.25</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-nlp-automl</artifactId>
            <version>0.0.5</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-alinlp</artifactId>
            <version>1.0.16</version>
       </dependency>

2.Code Sample

import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.exceptions.ClientException;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceRequest;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceResponse;
import com.aliyuncs.profile.DefaultProfile;
import com.google.gson.Gson;

import java.util.HashMap;
import java.util.Map;


//预训练模型  招标中标信息抽取—高级版服务
public class Demo5 {
    public static void main(String[] args) throws ClientException{
        DefaultProfile defaultProfile = DefaultProfile.getProfile("cn-hangzhou","XXXXXXXXXX","XXXXXXXXXX");
        IAcsClient client = new DefaultAcsClient(defaultProfile);
        String content = "2021年试油公司塔河油田井口、采油树试压作业招标第二次公告\n" +
                "招标编号:SYGS-ZB2021038\n" +
                "一、招标条件:\n" +
                "本项目已按要求履行了相关报批及备案等手续,资金已落实,具备招标条件,现对其进行公开招标。\n" +
                "二、项目概况:\n" +
                "1.项目背景:\n" +
                "2021年中石化西北油田分公司塔河油田完井测试中心决定将公司试油过程中配合作业的特车作业、打防火墙、硫化氢处理、废液运输和采油树试压等一体化施工,交由公司总包。年试油井50井次,预计一体化施工产值600万元,其中井口、采油树等试压作业项目资金预算49万元,项目履行期限:自合同签订之日起至2021年12月31日。\n" +
                "1. 1招标范围:\n" +
                "1.1.1确定井口试压、140MPA采油(气)树和采油机抽井口现场试压、现场试压数据采集所需要的设备和人员的服务价格。\n" +
                "1.2 服务区域:试油公司南疆塔河油田所属作业区域。\n" +
                "1.3 项目预计金额:49万元人民币,含税。\n" +
                "1.4 标段划分:本项目不划分标段。\n" +
                "1.5 招标结果有效期:自合同签订之日起至2021年12月31日。\n" +
                "2. 服务要求:\n" +
                "2.1服务技术要求:\n" +
                "2.1.1、施工队伍持有中石化油田分公司相应市场准入证;\n" +
                "2.1.2具有井口试压、140MPA采油(气)树和采油机抽井口现场试压、现场试压数据采集所需要的设备和人员。\n" +
                "2.1.3应当以自己的设备和人员施工,不得分包、转包。\n" +
                "三、投标人资质要求\n" +
                "1.具有独立的企业法人资格和有效的营业执照(经营范围须包括相关技术服务);\n" +
                "2.投标人须具备有效的中石化市场准入证(中石化西北油分公司市场信息系统),范围须包含本项目相关服务内容;\n" +
                "3.本次招标不接受联合体投标;\n" +
                "4.投标人近三年无严重违法、违规事项,无骗取中标情况,无重大质量、安全问题。以下列平台的查询结果和相关部门的证明材料为准。\n" +
                "(1)国家工商总局的《全国企业信用信息公示系统》“行政处罚信息”和“严重违法失信企业名单”中查询,查询网址是:http://www.gsxt.gov.cn/。\n" +
                "(2)中华人民共和国最高人民法院《全国法院失信被执行人名单信息公布与查询》平台公布信息为准;查询网址是:http://shixin.court.gov.cn/。\n" +
                "四、招标文件的获取\n" +
                "招标文件发售期为:2021年3月10日10:00至2021年3月14日19:00。持单位法人授权委托书、购买标书登记表(表格见公告附表)持单位法人授权委托书、购买标书登记表在库尔勒市建国北路3号综合办公楼304室购买招标文件,每套售价500 元(注:需通过银行汇款,款项来源填写试油公司XXX项目,每月24日-31日不接受汇款。)\n" +
                "名 称:中国石油集团西部钻探工程有限公司\n" +
                "纳税人识别号:91650******327257J\n" +
                "地址.电话:克拉玛依市友谊路115号(试油公司)0001**-756****\n" +
                "开户行账号:昆仑银行股份有限公司克拉玛依友谊路支行8820200******0000088\n" +
                "五、投标文件的递交\n" +
                "1、投标文件递交截止时间: 2021年3月31日下午16:00(北京时间)。\n" +
                "2、投标文件递交方式:开标现场递交纸质投标文件正本一份4副(电子版标书光盘1张)。\n" +
                "六、开标\n" +
                "1.开标时间:2021年3月31日 下午16:00\n" +
                "2.开标地点:克拉玛依市友谊路115号试油公司办公楼A2-701会议室\n" +
                "七、招标人信息\n" +
                "招标人:西部钻探工程有限公司试油公司\n" +
                "地 址:克拉玛依市友谊路115号\n" +
                "联系人:段某某\n" +
                "电 话:00**-222**** 136********";
        RunPreTrainServiceRequest request = new RunPreTrainServiceRequest();
        request.setServiceName("NER-ZhaoBiao");
        request.setPredictContent(content);
        RunPreTrainServiceResponse response = client.getAcsResponse(request);
        System.out.println(response.getPredictResult());
    }






}

3.测试结果

{"records":{"招标单位名称":[{"span":"西部钻探工程有限公司试油公司"},{"span":"中国石油集团西部钻探工程有限公司"},{"span":"2021年中石化西北油田分公司塔河油田完井测试中心"}],"工期":[{"span":"自合同签订之日起至2021年12月31日"}],"开标日期":[{"span":"2021-03-31"}],"招标单位地址":[{"span":"克拉玛依市友谊路115号"}],"公告标题":[{"span":"2021年试油公司塔河油田井口、采油树试压作业招标第二次公告"}],"资格要求":[{"span":"具有独立的企业法人资格和有效的营业执照(经营范围须包括相关技术服务)"},{"span":"投标人须具备有效的中石化市场准入证(中石化西北油分公司市场信息系统),范围须包含本项目相关服务内容"},{"span":"本次招标不接受联合体投标"}],"招标单位联系电话":[{"span":"00**-222****"}],"项目预算":[{"span":"490000.00元"}],"标的物名称":[{"span":"特车作业"},{"span":"硫化氢处理"},{"span":"废液运输"},{"span":"采油树试压"}],"项目编号":[{"span":"SYGS-ZB2021038"}],"招标范围":[{"span":"1.1.1确定井口试压、140MPA采油(气)树和采油机抽井口现场试压、现场试压数据采集所需要的设备和人员的服务价格"}],"招标单位联系人":[{"span":"段某某"}]}}

更多参考

快速入门-模型服务调用流程
预训练模型使用教程
招标中标信息抽取-高级版服务
阿里云自然语言处理PHP Core SDK使用Quick Start

目录
相关文章
|
18天前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
47 2
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
71 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
100 0
|
1月前
|
人工智能 自然语言处理
【NLP自然语言处理】NLP中的常用预训练AI模型
【NLP自然语言处理】NLP中的常用预训练AI模型
|
1月前
|
机器学习/深度学习 自然语言处理 异构计算
【NLP自然语言处理】初识深度学习模型Transformer
【NLP自然语言处理】初识深度学习模型Transformer
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
189 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
128 6
|
3月前
|
机器学习/深度学习 自然语言处理 数据处理
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
下一篇
无影云桌面