机器学习之聚类算法Kmeans及其应用,调用sklearn中聚类算法以及手动实现Kmeans算法。

简介: 机器学习之聚类算法Kmeans及其应用,调用sklearn中聚类算法以及手动实现Kmeans算法。

实现Kmeans算法实现聚类

要求:
1、根据算法流程,手动实现Kmeans算法;
2、调用sklearn中聚类算法,对给定数据集进行聚类分析;
3、对比上述2中Kmeans算法的聚类效果。

读取文件

def loadFile(path):
    dataList = []
    #打开文件:以二进制读模式、utf-8格式的编码方式                                                                                                打开
    fr = open(path,"r",encoding='UTF-8')
    record = fr.read()
    fr.close
    #按照行转换为一维表即包含各行作为元素的列表,分隔符有'\r', '\r\n', \n'
    recordList = record.splitlines()
    #逐行遍历:行内字段按'\t'分隔符分隔,转换为列表
    for line in recordList:
         if line.strip():
             dataList .append(list(map(float, line.split('\t'))))
    #返回转换后的矩阵
    recordmat = np.mat(dataList )
    return recordmat

手动实现Kmeans算法

def kMeans(dataset, k):
    m = np.shape(dataset)[0]
    ClustDist = np.mat(np.zeros((m, 2)))
    cents = randCents(dataset, k)
    clusterChanged = True
    # 循环迭代,得到最近的聚类中心
    while clusterChanged:
        clusterChanged = False
        for i in range(m):
            DistList = [distEclud(dataset[i, :], cents[jk,:]) for jk in range(k)]
            minDist = min(DistList)
            minIndex = DistList.index(minDist)

            if ClustDist[i, 0] != minIndex:
                clusterChanged = True
            ClustDist[i, :] = minIndex, minDist

        # 更新聚类
        for cent in range(k):
            ptsInClust = dataset[np.nonzero(ClustDist[:, 0].A == cent)[0]]
            # 更新聚类中心cents,axis=0按列求均值
            cents[cent, :] = np.mean(ptsInClust, axis=0)
    # 返回聚类中心和聚类分配矩阵
    return cents, ClustDist

处理数据

path_file = "TESTDATA.TXT"
recordMat = loadFile(path_file)
k = 4


cents, distMat = kMeans(recordMat, k)

绘制数据散点图

plt.subplot(311)
plt.grid(True)# 生成网格
for indx in range(len(distMat)):
    if distMat[indx, 0] == 0:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='red', marker='o')
    if distMat[indx, 0] == 1:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='blue', marker='o')
    if distMat[indx, 0] == 2:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='cyan', marker='o')
    if distMat[indx, 0] == 3:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='green', marker='o')

    #if distMat[indx, 0] == 4:
        #plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='black', marker='o')

绘制聚类中心

x = [cents[i,0] for i in range(k)]
y = [cents[i,1] for i in range(k)]
plt.scatter(x, y, s = 80, c='yellow', marker='o')
plt.title('Kmeans')

调用sklearn中聚类算法

from sklearn.cluster import KMeans
X = np.array(recordMat) # 生成初始聚类数据
#kmeans_model = KMeans(n_clusters=k, init='k-means++')  # 聚类模型
kmeans_model = KMeans(n_clusters=k, init='random')  # 聚类模型
kmeans_model.fit(X)  # 训练聚类模型

绘制k-Means聚类结果

# plt.figure()# 创建窗口
plt.subplot(312)
plt.axis([np.min(X[:,0])-1, np.max(X[:,0]+1), np.min(X[:,1])-1, np.max(X[:,1])+1])# 坐标轴
plt.grid(True)# 生成网格

colors = ['r', 'g', 'b','c'] # 聚类颜色
markers = ['o', 's', 'D', '+'] # 聚类标志
for i, l in enumerate(kmeans_model.labels_):
    plt.plot(X[i][0], X[i][1], color=colors[l],marker=markers[l],ls='None')
    plt.title('K = %s,random' %(k))

对比效果:

在这里插入图片描述

整合代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

def loadFile(path):
    dataList = []
    #打开文件:以二进制读模式、utf-8格式的编码方式                                                                                                打开
    fr = open(path,"r",encoding='UTF-8')
    record = fr.read()
    fr.close
    #按照行转换为一维表即包含各行作为元素的列表,分隔符有'\r', '\r\n', \n'
    recordList = record.splitlines()
    #逐行遍历:行内字段按'\t'分隔符分隔,转换为列表
    for line in recordList:
         if line.strip():
             dataList .append(list(map(float, line.split('\t'))))
    #返回转换后的矩阵
    recordmat = np.mat(dataList )
    return recordmat

def distEclud(vecA, vecB):
    return np.linalg.norm(vecA-vecB, ord=2)

def randCents(dataSet, k):
    n = np.shape(dataSet)[1]
    cents = np.mat(np.zeros((k,n)))
    for j in range(n):
        #质心必须在数据集范围内,也就是在min到max之间
        minCol = min(dataSet[:,j])
        maxCol = max(dataSet[:,j])
        #利用随机函数生成0到1.0之间的随机数
        cents [:,j] = np.mat(minCol + float(maxCol - minCol) * np.random.rand(k,1))
    return cents

def kMeans(dataset, k):
    m = np.shape(dataset)[0]
    ClustDist = np.mat(np.zeros((m, 2)))
    cents = randCents(dataset, k)
    clusterChanged = True
    # 循环迭代,得到最近的聚类中心
    while clusterChanged:
        clusterChanged = False
        for i in range(m):
            DistList = [distEclud(dataset[i, :], cents[jk,:]) for jk in range(k)]
            minDist = min(DistList)
            minIndex = DistList.index(minDist)

            if ClustDist[i, 0] != minIndex:
                clusterChanged = True
            ClustDist[i, :] = minIndex, minDist

        # 更新聚类
        for cent in range(k):
            ptsInClust = dataset[np.nonzero(ClustDist[:, 0].A == cent)[0]]
            # 更新聚类中心cents,axis=0按列求均值
            cents[cent, :] = np.mean(ptsInClust, axis=0)
    # 返回聚类中心和聚类分配矩阵
    return cents, ClustDist

path_file = "TESTDATA.TXT"
recordMat = loadFile(path_file)
k = 4


cents, distMat = kMeans(recordMat, k)
# 绘制数据散点图
plt.subplot(311)
plt.grid(True)# 生成网格
for indx in range(len(distMat)):
    if distMat[indx, 0] == 0:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='red', marker='o')
    if distMat[indx, 0] == 1:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='blue', marker='o')
    if distMat[indx, 0] == 2:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='cyan', marker='o')
    if distMat[indx, 0] == 3:
        plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='green', marker='o')

    #if distMat[indx, 0] == 4:
        #plt.scatter(recordMat[indx, 0], recordMat[indx, 1], c='black', marker='o')

# 绘制聚类中心
x = [cents[i,0] for i in range(k)]
y = [cents[i,1] for i in range(k)]
plt.scatter(x, y, s = 80, c='yellow', marker='o')
plt.title('Kmeans')





X = np.array(recordMat) # 生成初始聚类数据
# plt.figure()# 创建窗口
plt.subplot(312)
plt.axis([np.min(X[:,0])-1, np.max(X[:,0]+1), np.min(X[:,1])-1, np.max(X[:,1])+1])# 坐标轴
plt.grid(True)# 生成网格

colors = ['r', 'g', 'b','c'] # 聚类颜色
markers = ['o', 's', 'D', '+'] # 聚类标志
#kmeans_model = KMeans(n_clusters=k, init='k-means++')  # 聚类模型
kmeans_model = KMeans(n_clusters=k, init='random')  # 聚类模型
kmeans_model.fit(X)  # 训练聚类模型
# 绘制k-Means聚类结果

for i, l in enumerate(kmeans_model.labels_):
    plt.plot(X[i][0], X[i][1], color=colors[l],marker=markers[l],ls='None')
    plt.title('K = %s,random' %(k))



X = np.array(recordMat) # 生成初始聚类数据
# plt.figure()# 创建窗口
plt.subplot(313)
plt.axis([np.min(X[:,0])-1, np.max(X[:,0]+1), np.min(X[:,1])-1, np.max(X[:,1])+1])# 坐标轴
plt.grid(True)# 生成网格

colors = ['r', 'g', 'b','c'] # 聚类颜色
markers = ['o', 's', 'D', '+'] # 聚类标志
kmeans_model = KMeans(n_clusters=k, init='k-means++')  # 聚类模型
# kmeans_model = KMeans(n_clusters=k, init='random')  # 聚类模型
kmeans_model.fit(X)  # 训练聚类模型
# 绘制k-Means聚类结果

for i, l in enumerate(kmeans_model.labels_):
    plt.plot(X[i][0], X[i][1], color=colors[l],marker=markers[l],ls='None')
    plt.title('K = %s,k-means++' %(k))

plt.show()
目录
相关文章
|
21天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
65 4
|
2天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
24 12
|
17天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
36 1
|
22天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
76 1
|
26天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
24天前
|
机器学习/深度学习 数据采集 算法
隧道裂纹识别:基于计算机视觉与机器学习的应用分享
隧道裂纹的自动检测通过深度学习与计算机视觉技术实现,替代了传统人工检查,提高了检测精度与效率。本文介绍了一套完整的裂纹检测流程,包括图像采集、预处理、裂纹检测与标定、后处理及结果展示,提供了图像处理与深度学习模型的基本代码框架,旨在帮助读者掌握隧道裂纹检测的实际应用方法。
|
26天前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
26天前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
34 0
|
12天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
18天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。