2.5W字详解 | 专门为 “数据分析师” 写的 “MySQL优化” 问题,真的好懂多了!(七)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 2.5W字详解 | 专门为 “数据分析师” 写的 “MySQL优化” 问题,真的好懂多了!(七)

② 优化2:使用了in有时候会导致索引失效,基于此有了如下一种优化思路。

将in字段放在最后面。需要注意一点:每次创建新的索引的时候,最好是删除以前的废弃索引,否则有时候会产生干扰(索引之间)。

# 删除以前的索引
drop index typeid_authorid_bid on book;
# 再次创建索引
create index authorid_typeid_bid on book(authorid,typeid,bid);
# 再次查看执行计划
explain 
select bid from book 
where authorid=1  and typeid in(2,3)  
order by typeid desc ;


结果如下:

image.png

结果分析:这里虽然没有变化,但是这是一种优化思路。

总结如下:


a.最佳做前缀,保持索引的定义和使用的顺序一致性

b.索引需要逐步优化(每次创建新索引,根据情况需要删除以前的废弃索引)

c.将含In的范围查询,放到where条件的最后,防止失效。

 本例中同时出现了Using where(需要回原表); Using index(不需要回原表):原因,where authorid=1 and typeid in(2,3)中authorid在索引(authorid,typeid,bid)中,因此不需要回原表(直接在索引表中能查到);而typeid虽然也在索引(authorid,typeid,bid)中,但是含in的范围查询已经使该typeid索引失效,因此相当于没有typeid这个索引,所以需要回原表(using where);

 例如以下没有了In,则不会出现using where:


explain select bid from book 
where  authorid=1 and typeid =3
order by typeid desc ;


结果如下:

image.png


3)两表优化

# 创建teacher2新表
create table teacher2
(
      tid int(4) primary key,
      cid int(4) not null
);
# 插入数据
insert into teacher2 values(1,2);
insert into teacher2 values(2,1);
insert into teacher2 values(3,3);
# 创建course2新表
create table course2
(
  cid int(4) ,
  cname varchar(20)
);
# 插入数据
insert into course2 values(1,'java');
insert into course2 values(2,'python');
insert into course2 values(3,'kotlin');


案例:使用一个左连接,查找教java课程的所有信息。


explain 
select *
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png


① 优化

对于两张表,索引往哪里加?答:对于表连接,小表驱动大表。索引建立在经常使用的字段上。

为什么小表驱动大表好一些呢?


小表:10
  大表:300
# 小表驱动大表
select ...where 小表.x10=大表.x300 ;
for(int i=0;i<小表.length10;i++)
{
  for(int j=0;j<大表.length300;j++)
  {
  ...
    }
}
# 大表驱动小表
select ...where 大表.x300=小表.x10 ;
for(int i=0;i<大表.length300;i++)
{
    for(int j=0;j<小表.length10;j++)
    {
        ...
    }
}


分析:以上2个FOR循环,最终都会循环3000次;但是对于双层循环来说:一般建议,将数据小的循环,放外层。数据大的循环,放内层。不用管这是为什么,这是编程语言的一个原则,对于双重循环,外层循环少,内存循环大,程序的性能越高。

结论:当编写【…on t.cid=c.cid】时,将数据量小的表放左边(假设此时t表数据量小,c表数据量大。)


 我们已经知道了,对于两表连接,需要利用小表驱动大表,例如【…on t.cid=c.cid】,t如果是小表(10条),c如果是大表(300条),那么t每循环1次,就需要循环300次,即t表的t.cid字段属于,经常使用的字段,因此需要给cid字段添加索引。

 更深入的说明:一般情况下,左连接给左表加索引。右连接给右表加索引。其他表需不需要加索引,我们逐步尝试。


# 给左表的字段加索引
create index cid_teacher2 on teacher2(cid);
# 查看执行计划
explain 
select *
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png

 当然你可以下去接着优化,给cname添加一个索引。索引优化是一个逐步的过程,需要一点点尝试。


# 给cname的字段加索引
create index cname_course2 on course2(cname);
# 查看执行计划
explain 
select t.cid,c.cname
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png

 最后补充一个:Using join buffer是extra中的一个选项,表示Mysql引擎使用了“连接缓存”,即MySQL底层动了你的SQL,你写的太差了。


4)三表优化

大于等于张表,优化原则一样。

小表驱动大表

c.索引建立在经常查询的字段上

7、避免索引失效的一些原则

① 复合索引需要注意的点

a.复合索引,不要跨列或无序使用(最佳左前缀);

b.复合索引,尽量使用全索引匹配,也就是说,你建立几个索引,就使用几个索引;

② 不要在索引上进行任何操作(计算、函数、类型转换),否则索引失效

explain select * from book where authorid = 1 and typeid = 2;
explain select * from book where authorid*2 = 1 and typeid = 2 ;


结果如下:

image.png

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
14天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
43 3
|
17天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
40 1
|
24天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
63 9
|
18天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
86 1
|
24天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
55 5
|
29天前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
51 1
|
29天前
|
缓存 关系型数据库 MySQL
一文彻底弄懂MySQL优化之深度分页
【10月更文挑战第24天】本文深入探讨了 MySQL 深度分页的原理、常见问题及优化策略。首先解释了深度分页的概念及其带来的性能和资源问题。接着介绍了基于偏移量(OFFSET)和限制(LIMIT)以及基于游标的分页方法,并分析了它们的优缺点。最后,提出了多种优化策略,包括合理创建索引、优化查询语句和使用数据缓存,帮助提升分页查询的性能和系统稳定性。
|
19天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
28天前
|
存储 监控 关系型数据库
MySQL并发控制与管理:优化数据库性能的关键
【10月更文挑战第17天】MySQL并发控制与管理:优化数据库性能的关键
119 0