视频图像分析研究现状

简介: 智能视频分析技术指计算机图像视觉分析技术,是人工智能研究的一个分支,它在图像及图像描述之间建立映射关系,从而使计算机能够通过数字图像处理和分析来理解视频画面中的内容。智能视频分析技术涉及到模式识别、机器视觉、人工智能、网络通信以及海量数据管理等技术。视频智能分析通常可以分为几部分:运动目标的识别、目标跟踪与行为理解。

  视频分析技术通常采用计算机视觉(Computer Vision,CV)技术,在具体的场景下将场景背景与感兴趣的目标分离,实现目标进行追踪分析。通常会定义一定的规则,当场景下的目标出现违反规则的行为时,记录下目标违规行为。视频分析技术最早出现在国外,一开始主要出现在一些实验室,为军方提供一些应用产品,主要应用于反恐。随着技术的发展,视频分析逐渐应用到工业及民用领域,主要在公共场所使用,如:机场、医院、银行等。再到后来,因为市场对更强大的监控系统的需求,国内外视频分析技术飞速发展,技术也越来越成熟。全世界逐渐出现很多公司潜心在视频分析这一领域,如美国的 ObjectVideo、以色列的 NICE 以及中国的海康威视等。

      视频分析有着两种计算的方法,第一种是对行为的分析,第二种是对特征的识别。其中第一种对行为的分析重点在于背景的模型建立以及采用何种目标检测技术,这种计算方法通常目的是在背景中检测到活动目标的状态,比如检测背景中人员状态、检测背景中一群人状态或者某个人是否有异常行为等。第二种对特征的识别,和第一种不同点在于不需要对背景进行建模,这种计算方法的重点在于需要大量目标特征信息,信息越多越好,比如识别交通信号灯、识别人脸、识别车辆牌照号码等。

      视频分析的工作前提条件是对前景目标物的探测,最基础的方法就是背景减除法,背景减除法是通过两帧图像的差分来达到检测出目标物的效果,一般来说,选择当前图像以及背景图像两帧图像来差分,背景减除法既有优点也有缺点,优点在于检测出的目标数据特征比较好,在检测精确度和检测灵敏度方面也非常优秀,性能较为突出。但是,背景减除法缺点是对于动态背景的目标识别效果比较差,主要是太阳光对这种方法影响过大。    

      背景学习是视频分析算法中比较耗时的一项,背景学习的本质是采用时间平均图像的方式,计算出背景在特定时段的平均图像,把这个平均图像当作在这个时间段的背景模型,当这个过程结束的时候,为了防止场景图象的变化对建立的模型产生影响,这就需要系统有着一定的维护能力,也就是说背景模型有可能会改变,因此模型的建立是目标检测以及视频分析技术的基础。视频分析的本质是人工智能,视频分析技术和人类的眼睛类似,人类的眼睛采集到的画面,然后将清楚的焦距图像以及不清楚的焦距图像都传送到大脑中,大脑会对这些图像进行分级处理,一般来说,大脑会把图像背景、距离较近图像中移动速度较慢、距离较近的物体的分辨率降低,从而着重分析具有突出的特征物体,视频分析技术背景模型动态的变化就是与该过程相似,视频分析技术则是忽略特征不感兴趣的物体,着重于感兴趣目标,最后对目标做出相应的判断。

      传统的视频分析技术虽然解决了视频的存储和回放,以及各厂商视频流的互联互通,但仍然无法精准识别、定位和查找视频中的人、车、物等目标信息以及对目标进行精确特征提取,近些年来随着深度学习方法应用到视频分析中来,研究者在智能化监控技术的运动检测、目标跟踪、视频分割、行为识别等领域进行了很多研究并取得了丰硕的成果。智能视频监控正成为学术界、工业界新兴的研究热点和开发方向。

      视频分析技术给视频监控领域带来了颠覆性的革命,具有美好的发展前景的同时还有这很多的问题和挑战,比如天气的干扰能不能彻底解决、如果视频质量低怎么办、目标物移动速度超过检测速度导致识别不了等。虽然目前这些问题依然存在,但是随着技术更新迭代,监控领域结合视频分析一定会有更好的发展。

相关文章
|
19天前
|
人工智能 自然语言处理 安全
调研219篇文献,全面了解GenAI在自适应系统中的现状与研究路线图
【10月更文挑战第22天】生成式人工智能(GenAI)在自适应系统(SASs)中展现出巨大潜力,尤其是在数据理解、逻辑推理和自主性增强方面。GenAI可以提升SASs的自主性和人机交互效率,但也面临技术多样性、数据需求、隐私问题及模型可解释性和鲁棒性的挑战。研究路线图包括解决关键挑战、模型评估优化、改善人机交互和探索实际应用。论文链接:https://dl.acm.org/doi/10.1145/3686803
33 7
|
3月前
|
机器学习/深度学习 数据可视化 算法
如何对某个研究方向的领域论文进行分析?如何快速了解某个研究方向的发展现状?如何利用VOSviewer分析研究领域的发展现状?
本文介绍了如何使用VOSviewer软件对特定研究方向的领域论文进行可视化分析,以ESN(Echo State Network)网络研究为例,展示了从安装软件、检索文献、导入数据到进行关键词分析、作者分析和引用量分析的完整流程,帮助用户快速了解并深入研究某个学术领域的发展趋势和现状。
84 0
如何对某个研究方向的领域论文进行分析?如何快速了解某个研究方向的发展现状?如何利用VOSviewer分析研究领域的发展现状?
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
技术分析:AI大模型战场的分化与赛点分析
技术分析:AI大模型战场的分化与赛点分析
|
6月前
|
机器学习/深度学习 人工智能 监控
机器视觉应用技术报告
机器视觉应用技术报告
58 0
|
编解码 算法 JavaScript
|
机器学习/深度学习 人工智能 资源调度
|
机器学习/深度学习 人工智能 编解码
视频行为识别方法现状
人工智能作为社会信息化的战略性技术之一,近年来得到了国内外专家学者的广泛关注。行为识别技术作为人工智能的重点研究方向,已广泛应用于智能监控、人机交互、医疗辅助、虚拟现实等诸多领域。尽管目前该技术已取得很大的研究进展,但仍存在许多挑战,如人体行为识别过程中容易受到噪声等外界因素干扰,导致算法识别率不高、鲁棒性较差。
954 0
视频行为识别方法现状
|
传感器 算法 安全
车距检测的国内外研究现状
车距测量技术对于减少交通安全事故,提高行车安全具有重要的意义。目前车距检测技术多是以车辆为参照进行测距,检测结果为两车的直线距离,但在弯道情况下则与实际车间距误差较大。
1089 0
车距检测的国内外研究现状
|
机器学习/深度学习 人工智能 监控
利用人工智能和大数据进行心理测量分析
研究人工智能和大数据在心理测量学中的影响,对于该领域未来的改进至关重要。
利用人工智能和大数据进行心理测量分析
|
机器学习/深度学习 算法 数据挖掘
基于图像的植物病害识别研究现状
基于图像分析的植物叶部病害识别技术研究,对有效防治农作物病害的发生,提高农作物的产量、减少农药对农产品和环境的污染,均具有重要的现实意义。
851 0