利用人工智能和大数据进行心理测量分析

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 研究人工智能和大数据在心理测量学中的影响,对于该领域未来的改进至关重要。

利用人工智能和大数据进行心理测量分析

人工智能(AI)和大数据可以帮助招聘人员更好地了解一个人的个性和行为风格。

03030f7066cf92af642389029d7dfcbc505d6e.jpg

或许,大数据的最大受益者是人工智能领域。

结合起来,这两种技术可以将心理测量分析提升到一个新的水平。研究人工智能和大数据在心理测量学中的影响,对于该领域未来的改进至关重要。

涉及心理测量评估可以产生影响的领域的数量之多,确实令人难以置信。从招聘期间评估求职者到在全国范围内竞选,从市场营销到执法,心理测量评估在了解大量人群的脉搏或个人的性格特征方面发挥着重要作用。如果组织,无论是政党还是企业,充分利用心理测量学的大数据能力,其可以在各自的战场上获得几乎无懈可击的优势。

人工智能和大数据在心理测量学中的应用领域

众所周知,数字化正在渗透到人们生活的几乎所有方面。因此,人工智能和大数据等技术自然也会在心理测量学领域产生影响。人工智能难以置信的数据处理和分析能力在当今时代是人尽皆知的。将这些属性与大数据的综合性结合起来,就像是为心理测量学的增长和发展提供了火箭燃料。想知道在心理测量学中,人工智能和大数据可以实现什么(或多大程度)吗?以下是一些答案:

❶ 候选人招聘

过去的心理测试通常使用逻辑回归分析的目的。虽然这些技术有其优势,但根本无法与人工智能(辅以大数据)在该领域取得的成就相提并论。例如,人力资源主管可以使用机器学习来确定候选人的优势和劣势。为此,人力资源主管会在面试或远程面试中向求职者提出一系列问题。当候选人回答问题时,其的举止、语气、面部表情都可以通过人工智能摄像头监控。面试结束后,招聘人员会使用人工智能来评估候选人的视角和判断力、同理心和情商,以及参与度、决策能力和监管能力。对这些属性进行判断和评估,以了解候选人如何参与协作解决问题,并在高压情况下发挥决定性作用。

除了决策和解决问题的能力外,还可借助人工智能和大数据来评估候选人在严格期限内完成各自工作的能力。除了面试和招聘练习,其他技巧也可以用来评估候选人的性格。例如,招聘人员可以浏览应聘者的社交媒体页面,了解其的性格特征和对一般话题的看法。查看某人的社交媒体页面不应该是消极评价个人观点的一种方式。相反,这可以很好地衡量候选人如何使用语言或视觉表达自己的想法。总之,应聘者的沟通技巧,在一定程度上,可以通过这种方式确定。人工智能和大数据可以帮助招聘人员在网络上找到这些数据,然后通过模式和异常识别对其进行处理,找到求职者的潜在性格特征。

除此之外,机器学习还可以进一步用于将增强现实工具整合到候选人招聘中。增强现实工具可以创建类似真实世界的模拟,以评估候选人处理实际运营危机的能力。人工智能利用大数据的海量信息库来评估候选人在这项测试中的表现。增强现实为候选人招聘和选拔增加了一个全新的维度,如果没有人工智能的能力和大数据的惊人范围,这是不可能实现的。

❷ 选举活动

可能都有听说过,Cambridge Analytica是如何帮助美国前总统唐纳德·特朗普赢得2016年大选的。特朗普先生的竞选活动是有史以来最受数据驱动的政治活动之一。然而在探索之前,必须先了解心理测量分析的主要目的。

心理测试,首先是用来获取个人(或一群人)的信息,以及其对各种话题的好恶、看法和意见。数据收集器如何处理这些信息取决于所需的最终结果类型。在这种情况下,大数据和人工智能有助于扩大全州或全国范围的心理评估范围。事实证明,一个人的个性可以通过研究来说服他或她购买某些产品或服务。更重要的是,这些信息可以用来说服个人在选举中投票给特定的候选人或政党。

下面来看看 Cambridge Analytica 在影响2016年美国总统大选中的作用。

有迹象表明,在竞选活动之前,这家科技公司就与特朗普先生的竞选活动有一段时间的联系。该组织利用心理测量学的人工智能和大数据,在选举中获得了优势。这种方法特别具有开创性,因为以前的候选人主要利用人口统计学观点,并关注其他核心选民问题。 Cambridge Analytica 在组合中引入了先进的心理测量学,以产生积极的最终结果。

为了在选举中取得成功,该组织使用了行为科学和选民监督,除了一些常见的工具,如OCEAN模型,通过人工智能驱动的系统和模型轰炸个人的概念,以及高级大数据分析。

这过程的初始阶段,需要该组织从Facebook等知名组织的社交媒体页面上购买数百万个人的大量数据。除此类记录外,还收集并仔细分析待处理的维修帐单、土地及财产登记册、购物数据、产品及服务的购买历史等详细信息。如果这个信息是长而宽的,这意味着其涵盖了几个人以及每个人的几个方面。换句话说,就是大数据。在收集了所有这些信息之后,这家英国公司对数据进行了汇总和整理。此外,该组织还部署了人工智能工具,根据五大人格特征对每个人进行不同的分类。

基于这些信息,共和党总统候选人在演讲中针对更脆弱、更容易被操纵的选民发表讲话。就连选举演讲也经过了精心的调整和定制,以引起社会各阶层的个人共鸣。该公司因其高度数据驱动的努力而获得了超过500万美元的收入。然而,在特朗普先生的压倒性胜利中,真正的英雄是人工智能和大数据。

❸ 产品和服务的营销

如上所述,人工智能和大数据可以用于了解潜在客户的特征、喜好和偏好,以便用特定的、有针对性的广告淹没他们的收件箱。出于营销的目的,组织使用大数据,包括客户的社交媒体页面,数字零售商的购买历史记录,甚至在某些情况下的短信。

在心理测量学中使用大数据的挑战

与人工智能相比,大数据在上述应用领域可以说更为重要。所以,既然已经看到了人工智能和大数据在心理测量学中的一些应用领域,下面是组织在使用大数据进行性格分析时可能面临的挑战:

1、大数据带来的问题与提供人工智能系统进行分析的信息的可靠性有关。大数据的可靠性会受到现有数据、技术以及人工智能算法的严重影响。在进行预测和高层决策时,大数据的混乱和复杂可能会给人工智能系统带来问题。

2、人工智能中的偏见一直是技术需要克服的问题。随着大数据的加入,人工智能输出的公平性可能仍然是一个问题。此外,也可以说,人工智能和大数据的影响范围在某种程度上受到了互联网这个封闭温室的限制。因此,在许多情况下,大数据不足以包括经济落后的个人或家庭的信息,因为这些人无法上网,无法购买计算设备。

3、在可靠性和公平性之后,随之而来的是用户隐私的挑战。正如所见,人工智能和大数据大量使用用户数据(有时未经用户签字同意)来产生最终结果。因此,大数据和人工智能在这方面不断面临道德难题。

3845ed314734049e66c28961a0a12a93459bdf.jpg

人工智能和大数据的无数能力对心理测量学领域至关重要。然而,有一些挑战需要解决,以便进一步改善。但可以肯定的是,这些技术可以在未来进一步深化心理测量学的范围,因为其近乎持续发展。与此同时,大数据和人工智能将继续留在心理测量学研究领域,以实现上述目的以及更多目的的研究。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
22天前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
6天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
74 15
|
12天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
11天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
23天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
21天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
1月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
70 4
|
1月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
36 4
|
1月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
209 5
|
29天前
|
数据采集 机器学习/深度学习 人工智能
探索人工智能与大数据的融合之路####
本文将深入探讨人工智能(AI)与大数据之间的共生关系,揭示二者如何相互促进,共同推动技术边界的拓展。不同于传统摘要的概述形式,本部分将以一个生动的比喻开篇:如果把大数据比作广阔无垠的数字海洋,那么人工智能就是航行其间的智能航船,两者相辅相成,缺一不可。随后,简述文章将从数据采集、处理、分析到决策应用的全流程中,详细阐述AI如何借助大数据的力量实现自我迭代与优化,以及大数据如何在AI算法的驱动下释放出前所未有的价值。最后,预告文章还将探讨当前面临的挑战与未来趋势,为读者勾勒一幅AI与大数据融合发展的宏伟蓝图。 ####