《Python Cookbook(第3版)中文版》——6.4 以增量方式解析大型XML文件

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

本节书摘来自异步社区《Python Cookbook(第3版)中文版》一书中的第6章,第6.4节,作者[美]David Beazley , Brian K.Jones,陈舸 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

6.4 以增量方式解析大型XML文件

6.4.1 问题

我们需要从一个大型的XML文档中提取出数据,而且对内存的使用要尽可能少。

6.4.2 解决方案

任何时候,当要面对以增量方式处理数据的问题时,都应该考虑使用迭代器和生成器。下面是一个简单的函数,可用来以增量方式处理大型的XML文件,它只用到了很少量的内存:

from xml.etree.ElementTree import iterparse
def parse_and_remove(filename, path):
    path_parts = path.split('/')
    doc = iterparse(filename, ('start', 'end'))
    # Skip the root element
    next(doc)
    tag_stack = []
    elem_stack = []
    for event, elem in doc:
        if event == 'start':
            tag_stack.append(elem.tag)
            elem_stack.append(elem)
        elif event == 'end':
            if tag_stack == path_parts:
                yield elem
                elem_stack[-2].remove(elem)
            try:
                tag_stack.pop()
                elem_stack.pop()
            except IndexError:
                pass

要测试这个函数,只需要找一个大型的XML文件来配合测试即可。这种大型的XML文件常常可以在政府以及数据公开的网站上找到。比如,可以下载芝加哥的坑洞数据库XML。在写作本书时,这个下载文件中有超过100000行的数据,它们按照如下的方式编码:

<response>
  <row>
    <row ...>
      <creation_date>2012-11-18T00:00:00</creation_date>
      <status>Completed</status>
      <completion_date>2012-11-18T00:00:00</completion_date>
      <service_request_number>12-01906549</service_request_number>
      <type_of_service_request>Pot Hole in Street</type_of_service_request>
      <current_activity>Final Outcome</current_activity>
      <most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
      <street_address>4714 S TALMAN AVE</street_address>
      <zip>60632</zip>
      <x_coordinate>1159494.68618856</x_coordinate>
      <y_coordinate>1873313.83503384</y_coordinate>
      <ward>14</ward>
      <police_district>9</police_district>
      <community_area>58</community_area>
      <latitude>41.808090232127896</latitude>
      <longitude>-87.69053684711305</longitude>
      <location latitude="41.808090232127896"
                       longitude="-87.69053684711305" />
    </row>
    <row ...>
      <creation_date>2012-11-18T00:00:00</creation_date>
      <status>Completed</status>
      <completion_date>2012-11-18T00:00:00</completion_date>
      <service_request_number>12-01906695</service_request_number>
      <type_of_service_request>Pot Hole in Street</type_of_service_request>
      <current_activity>Final Outcome</current_activity>
      <most_recent_action>CDOT Street Cut ... Outcome</most_recent_action>
      <street_address>3510 W NORTH AVE</street_address>
      <zip>60647</zip>
      <x_coordinate>1152732.14127696</x_coordinate>
      <y_coordinate>1910409.38979075</y_coordinate>
      <ward>26</ward>
      <police_district>14</police_district>
      <community_area>23</community_area>
      <latitude>41.91002084292946</latitude>
      <longitude>-87.71435952353961</longitude>
      <location latitude="41.91002084292946"
                       longitude="-87.71435952353961" />
    </row>
  </row>
</response>

假设我们想编写一个脚本来根据坑洞的数量对邮政编码(ZIP code)进行排序。可以编写如下的代码来实现:

from xml.etree.ElementTree import parse
from collections import Counter
potholes_by_zip = Counter()
doc = parse('potholes.xml')
for pothole in doc.iterfind('row/row'):
    potholes_by_zip[pothole.findtext('zip')] += 1
for zipcode, num in potholes_by_zip.most_common():
    print(zipcode, num)

这个脚本存在的唯一问题就是它将整个XML文件都读取到内存中后再做解析。在我们的机器上,运行这个脚本需要占据450 MB内存。但是如果使用下面这份代码,程序只做了微小的修改:

from collections import Counter
potholes_by_zip = Counter()
data = parse_and_remove('potholes.xml', 'row/row')
for pothole in data:
    potholes_by_zip[pothole.findtext('zip')] += 1
for zipcode, num in potholes_by_zip.most_common():
    print(zipcode, num)

这个版本的代码运行起来只用了7 MB内存——多么惊人的提升啊!

6.4.3 讨论

本节中的示例依赖于ElementTree模块中的两个核心功能。首先,iterparse()方法允许我们对XML文档做增量式的处理。要使用它,只需提供文件名以及一个事件列表即可。事件列表由1个或多个start/end,start-ns/end-ns组成。iterparse()创建出的迭代器产生出形式为(event,elem)的元组,这里的event是列出的事件,而elem是对应的XML元素。示例如下:

>>> data = iterparse('potholes.xml',('start','end'))
>>> next(data)
('start', <Element 'response' at 0x100771d60>)
>>> next(data)
('start', <Element 'row' at 0x100771e68>)
>>> next(data)
('start', <Element 'row' at 0x100771fc8>)
>>> next(data)
('start', <Element 'creation_date' at 0x100771f18>)
>>> next(data)
('end', <Element 'creation_date' at 0x100771f18>)
>>> next(data)
('start', <Element 'status' at 0x1006a7f18>)
>>> next(data)
('end', <Element 'status' at 0x1006a7f18>)
>>>

当某个元素首次被创建但是还没有填入任何其他数据时(比如子元素),会产生start事件,而end事件会在元素已经完成时产生。尽管没有在本节示例中出现,start-ns和end-ns事件是用来处理XML命名空间声明的。

在这个示例中,start和end事件是用来管理元素和标签栈的。这里的栈代表着文档结构中被解析的当前层次(current hierarchical),同时也用来判断元素是否匹配传递给parse_and_remove()函数的请求路径。如果有匹配满足,就通过yield将其发送给调用者。

紧跟在yield之后的语句就是使得ElementTree能够高效利用内存的关键所在:

elem_stack[-2].remove(elem)

这一行代码使得之前通过yield产生出的元素从它们的父节点中移除。因此可假设其再也没有任何其他的引用存在,因此该元素被销毁进而可以回收它所占用的内存。

这种迭代式的解析以及对节点的移除使得对整个文档的增量式扫描变得非常高效。在任何时刻都能构造出一棵完整的文档树。然而,我们仍然可以编写代码以直接的方式来处理XML数据。

这种技术的主要缺点就是运行时的性能。当进行测试时,将整个文档先读入内存的版本运行起来大约比增量式处理的版本快2倍。但是在内存的使用上,先读入内存的版本占用的内存量是增量式处理的60倍多。因此,如果内存使用量是更加需要关注的因素,那么显然增量式处理的版本才是大赢家。

相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
76 2
|
2月前
|
Java
Java“解析时到达文件末尾”解决
在Java编程中,“解析时到达文件末尾”通常指在读取或处理文件时提前遇到了文件结尾,导致程序无法继续读取所需数据。解决方法包括:确保文件路径正确,检查文件是否完整,使用正确的文件读取模式(如文本或二进制),以及确保读取位置正确。合理设置缓冲区大小和循环条件也能避免此类问题。
491 2
|
2月前
|
SQL 关系型数据库 MySQL
数据库导入SQL文件:全面解析与操作指南
在数据库管理中,将SQL文件导入数据库是一个常见且重要的操作。无论是迁移数据、恢复备份,还是测试和开发环境搭建,掌握如何正确导入SQL文件都至关重要。本文将详细介绍数据库导入SQL文件的全过程,包括准备工作、操作步骤以及常见问题解决方案,旨在为数据库管理员和开发者提供全面的操作指南。一、准备工作在导
503 0
|
2月前
|
自然语言处理 数据处理 Python
python操作和解析ppt文件 | python小知识
本文将带你从零开始,了解PPT解析的工具、工作原理以及常用的基本操作,并提供具体的代码示例和必要的说明【10月更文挑战第4天】
489 60
|
27天前
|
XML JSON API
如何使用Python将字典转换为XML
本文介绍了如何使用Python中的`xml.etree.ElementTree`库将字典数据结构转换为XML格式。通过定义递归函数处理字典到XML元素的转换,生成符合标准的XML文档,适用于与旧系统交互或需支持复杂文档结构的场景。示例代码展示了将一个简单字典转换为XML的具体实现过程。
17 1
|
1月前
|
消息中间件 存储 Java
RocketMQ文件刷盘机制深度解析与Java模拟实现
【11月更文挑战第22天】在现代分布式系统中,消息队列(Message Queue, MQ)作为一种重要的中间件,扮演着连接不同服务、实现异步通信和消息解耦的关键角色。Apache RocketMQ作为一款高性能的分布式消息中间件,广泛应用于实时数据流处理、日志流处理等场景。为了保证消息的可靠性,RocketMQ引入了一种称为“刷盘”的机制,将消息从内存写入到磁盘中,确保消息持久化。本文将从底层原理、业务场景、概念、功能点等方面深入解析RocketMQ的文件刷盘机制,并使用Java模拟实现类似的功能。
42 3
|
1月前
|
存储
文件太大不能拷贝到U盘怎么办?实用解决方案全解析
当我们试图将一个大文件拷贝到U盘时,却突然跳出提示“对于目标文件系统目标文件过大”。这种情况让人感到迷茫,尤其是在急需备份或传输数据的时候。那么,文件太大为什么会无法拷贝到U盘?又该如何解决?本文将详细分析这背后的原因,并提供几个实用的方法,帮助你顺利将文件传输到U盘。
|
2月前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
2月前
|
数据处理 Python
Python 高级技巧:深入解析读取 Excel 文件的多种方法
在数据分析中,从 Excel 文件读取数据是常见需求。本文介绍了使用 Python 的三个库:`pandas`、`openpyxl` 和 `xlrd` 来高效处理 Excel 文件的方法。`pandas` 提供了简洁的接口,而 `openpyxl` 和 `xlrd` 则针对不同版本的 Excel 文件格式提供了详细的数据读取和处理功能。此外,还介绍了如何处理复杂格式(如合并单元格)和进行性能优化(如分块读取)。通过这些技巧,可以轻松应对各种 Excel 数据处理任务。
254 16
|
2月前
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
50 3

推荐镜像

更多