用户画像产品化——从零开始搭建实时用户画像(六)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 在开发好用户标签以后,如何将标签应用到实际其实是一个很重要的问题。只有做好产品的设计才能让标签发挥真正的价值,本文将介绍用户画像的产品化过程。

一、标签展示


image.png

首先是标签展示功能,这个主要供业务人员和研发人员使用,是为了更直观的看见整个的用户标签体系。

不同的标签体系会有不同的层级,那么这个页面的设计就需要我们展示成树状的结构,方便以后的扩展。

在最后一个层级,比如自然性别,可以设计一个统计页面,在进入页面后,可以展示相应的数据统计情况,

可以更直观看见标签中值得比例,也可以为业务提供好的建议,另外可以对标签的具体描述进行展示,起到一个说明的作用,还可以展示标签按天的波动情况,观察标签的变化情况。

image.png

这一部分的数据来源呢?之前也提到过,这些标签的元数据信息都存在mysql中,方便我们查询。

所以树状图和标签描述信息需要去mysql中获取,而比例等图表数据则是从Hbase,Hive中查询获取的,当然也有直接通过ES获取的。但是每天的标签历史波动情况,还是要通过每天跑完标签后存在mysql中作为历史记录进行展示。


二 、标签查询


这一功能可以提供给研发人员和业务人员使用。

标签查询功能其实就是对用户进行全局画像的过程,对于一个用户的全量标签信息,我们是需要对其进行展示的。

image.png

输入用户id后,可以查看该用户的属性信息、行为信息、风控属性等信息。从多方位了解一个具体的用户特征。

这些已经是标签的具体信息了,由于是对单一id的查找,从hive中获取会造成查询速度的问题,所以我们更建议从Hbase或者ES中查询获取,这样查询效率和实时性都能获得极大的提升。


三、标签管理


这一功能是提供给研发人员使用的。

对于标签,不能每一次新增一个标签都进行非常大改动,这样是非常耗费人力的,所以必须要有可以对标签进行管理的功能。

这里定义了标签的基本信息,开发方式,开发人员等等,在完成标签的开发以后,直接在此页面对标签进行录入,就可以完成标签的上线工作,让业务人员可以对标签进行使用。

微信图片_20220527223527.png

新增和编辑标签的页面,可以提供下拉框或者输入框提供信息录入的功能。

微信图片_20220527223531.png

之前已经提到过,这些标签的元数据信息都保存在了Mysql中,只要完成对其的新增和修改就可以了。


四、用户分群


作为用户画像最核心的功能,用户分群功能。是用户画像与业务系统建立联系的桥梁,也是用户画像的价值所在。

这项功能主要供业务人员使用。

此功能允许用户自定义的圈定一部分人员,圈定的规则就是对于标签的条件约束。

在圈定好人群以后,可以对这部分人群提供与业务系统的外呼系统,客服系统,广告系统,Push系统的交互,达到真正的精细化运营的目的。

微信图片_20220527223534.png

对于标签规则的判断,需要将记录好的规则存储于Mysql中,在进行人群计算时又需要将规则解析成可计算的逻辑。不管是解析成Sql或者其他的查询语言都难度巨大,这对于研发是一个非常大的挑战。

微信图片_20220527223536.png

在此功能中,还可以增加人群对比的功能,对不同人群的不同标签进行圈定,对比。这对于查询性能也是一个巨大的考验。

微信图片_20220527223539.png

但是,用户分群功能作为用户画像的核心是我们必须要实现的。对于技术架构,Hbase更擅长与KV形式的查询,对于多维度查询性能较差,所以可以采取ES索引,在ES查询出Hbase的Rowkey,再去查询Hbase的方式。也有很多公司选择整体迁移到ES中完成此项工作。那么ES可以胜任这项工作吗?

下一章,我们来聊一聊如何用ES来实现用户分群,未完待续~

参考文献

《用户画像:方法论与工程化解决方案》

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
存储 SQL 机器学习/深度学习
用户画像标签体系——从零开始搭建实时用户画像(三)
用户画像标签体系——从零开始搭建实时用户画像(三)
2645 0
用户画像标签体系——从零开始搭建实时用户画像(三)
|
3月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
182 0
|
存储 SQL 搜索推荐
【送书】从不了解用户画像,到用画像数据赋能业务看这一本书就够了丨《用户画像:平台构建与业务实践》
【送书】从不了解用户画像,到用画像数据赋能业务看这一本书就够了丨《用户画像:平台构建与业务实践》
|
数据可视化 数据建模
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(19)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(19)
|
数据建模
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(6)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(6)
|
数据建模
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(14)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(14)
|
数据建模
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(15)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(15)
|
分布式计算 数据建模 MaxCompute
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(8)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(8)
|
SQL 数据建模 开发者
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(10)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(10)
156 0
|
SQL 分布式计算 数据建模
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(9)
《全链路数据治理-智能数据建模 》——产品实操:零售电商数据建模操作实践(9)
127 0