自然语言处理预训练模型商品评价解析服务-本地生活领域 Java SDK示例

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。可用于搭建内容搜索、内容推荐、舆情识别及分析、文本结构化、对话机器人等智能产品。NLP自学习平台提供了一些预训练的特定领域模型服务。例如:商品评价解析服务、新闻层次分类服务、中文简历抽取、英文简历抽取等,且无需自主标注训练,直接调用API即可使用。本文将使用Java SDK演示商品评价解析服务-本地生活领域的快速调用以供参考。

使用前提:服务开通与资源包购买

操作步骤:

1.添加pom依赖

   <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-core</artifactId>
            <version>4.5.25</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-nlp-automl</artifactId>
            <version>0.0.5</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-alinlp</artifactId>
            <version>1.0.16</version>
       </dependency>

2.Code Sample

import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.exceptions.ClientException;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceRequest;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceResponse;
import com.aliyuncs.profile.DefaultProfile;
import com.google.gson.Gson;

import java.util.HashMap;
import java.util.Map;

//预训练模型-商品评价分析服务(本地生活领域)
public class Demo12{

    public static void main(String[] args) throws ClientException{
        DefaultProfile defaultProfile = DefaultProfile.getProfile("cn-hangzhou","XXXXXXXXXX","XXXXXXXXXX");
        IAcsClient client = new DefaultAcsClient(defaultProfile);

        Map<String, Object> input = new HashMap();
        input.put("content","服务态度不错 ,技术也还行 ,新开的店子,支持一下,有机会下次还来!");
        input.put("domain","barber");
        input.put("entity",true);
        Map<String, Object> map = new HashMap<>();
        map.put("input", input);

        RunPreTrainServiceRequest request = new RunPreTrainServiceRequest();
        request.setServiceName("ABSA-LOCAL-LIFE");
        //request.setPredictContent(JSON.toJSONString(map));
        request.setPredictContent(new Gson().toJson(map));
        RunPreTrainServiceResponse response = client.getAcsResponse(request);
        System.out.println(response.getPredictResult());
    }
}

3.测试结果

{"code":1000,"data":{"cost":"50.203ms","textProb":0.9987,"aspectItem":[{"clause":"支持一下","clauseIndex":"21,25","aspectPolarity":"正","terms":[{"aspectTerm":"","opinionTerm":"有机会下次还来","normedAspectTerm":"","normedOpinionTerm":"有机会下次还来"},{"aspectTerm":"","opinionTerm":"支持一下","normedAspectTerm":"","normedOpinionTerm":"支持一下"}],"positiveProb":0.999,"aspectCategory":"整体^再次消费的意愿","negativeProb":0.001},{"clause":"服务态度不错 ","clauseIndex":"0,7","aspectPolarity":"正","terms":[{"aspectTerm":"服务态度","opinionTerm":"不错","normedAspectTerm":"服务态度","normedOpinionTerm":"不错"}],"positiveProb":0.998,"aspectCategory":"服务^服务人员态度","negativeProb":0.001},{"clause":"技术也还行 ","clauseIndex":"8,14","aspectPolarity":"正","terms":[{"aspectTerm":"技术","opinionTerm":"还行","normedAspectTerm":"技术","normedOpinionTerm":"还行"}],"positiveProb":0.999,"aspectCategory":"技术^其他","negativeProb":0.001}],"textPolarity":"正"},"message":"SUCCESS","tracerId":"1653444557.1437464"}

更多参考

快速入门-模型服务调用流程
预训练模型使用教程
商品评价解析服务-本地生活领域
阿里云自然语言处理PHP Core SDK使用Quick Start

目录
相关文章
|
1月前
|
Java
在 Java 中捕获和处理自定义异常的代码示例
本文提供了一个 Java 代码示例,展示了如何捕获和处理自定义异常。通过创建自定义异常类并使用 try-catch 语句,可以更灵活地处理程序中的错误情况。
56 1
|
2月前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
48 1
|
23天前
|
Java
在Java中实现接口的具体代码示例
可以根据具体的需求,创建更多的类来实现这个接口,以满足不同形状的计算需求。希望这个示例对你理解在 Java 中如何实现接口有所帮助。
37 1
|
2月前
|
存储 缓存 Java
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
这篇文章详细介绍了Java中的IO流,包括字符与字节的概念、编码格式、File类的使用、IO流的分类和原理,以及通过代码示例展示了各种流的应用,如节点流、处理流、缓存流、转换流、对象流和随机访问文件流。同时,还探讨了IDEA中设置项目编码格式的方法,以及如何处理序列化和反序列化问题。
88 1
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
63 0
|
2月前
|
存储 Java
什么是带有示例的 Java 中的交错数组?
什么是带有示例的 Java 中的交错数组?
53 9
|
2月前
|
Java
让星星⭐月亮告诉你,jdk1.8 Java函数式编程示例:Lambda函数/方法引用/4种内建函数式接口(功能性-/消费型/供给型/断言型)
本示例展示了Java中函数式接口的使用,包括自定义和内置的函数式接口。通过方法引用,实现对字符串操作如转换大写、数值转换等,并演示了Function、Consumer、Supplier及Predicate四种主要内置函数式接口的应用。
28 1
|
2月前
|
Java API 网络安全
Java 发送邮件示例
本示例展示了如何使用Java编程语言发送电子邮件。通过利用JavaMail API,这段代码实现了从配置SMTP服务器,设置邮件属性,到发送邮件的全过程,为开发者提供了实用的参考。
157 10
|
2月前
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
42 3
|
3月前
|
Kubernetes API 开发工具
【Azure Developer】通过SDK(for python)获取Azure服务生命周期信息
需要通过Python SDK获取Azure服务的一些通知信息,如:K8S版本需要更新到指定的版本,Azure服务的维护通知,服务处于不健康状态时的通知,及相关的操作建议等内容。
51 18

热门文章

最新文章

推荐镜像

更多