什么是实时流式计算?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 实时流式计算,也就是RealTime,Streaming,Analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。实时流式计算,或者是实时计算,流式计算,在大数据领域都是差不多的概念。那么,到底什么是实时流式计算呢?

实时流式计算,也就是RealTime,Streaming,Analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。

实时流式计算,或者是实时计算,流式计算,在大数据领域都是差不多的概念。那么,到底什么是实时流式计算呢?

谷歌大神Tyler Akidau《the-world-beyond-batch-streaming-101》一文中提到过实时流式计算的三个特征:

1、无限数据

2、无界数据处理

3、低延迟


无限数据指的是,一种不断增长的,基本上无限的数据集。这些通常被称为“流数据”,而与之相对的是有限的数据集。

无界数据处理,一种持续的数据处理模式,能够通过处理引擎重复的去处理上面的无限数据,是能够突破有限数据处理引擎的瓶颈的。

低延迟,延迟是多少并没有明确的定义。但我们都知道数据的价值将随着时间的流逝降低,时效性将是需要持续解决的问题。


现在大数据应用比较火爆的领域,比如推荐系统在实践之初受技术所限,可能要一分钟,一小时,甚至更久对用户进行推荐,这远远不能满足需要,我们需要更快的完成对数据的处理,而不是进行离线的批处理。

但是这种模型肯定会带来离线批处理所不存在的两个问题:正确性与时间。

而这也正是实时流式计算的关键点:

1、正确性        一旦正确性有了保证,可以匹敌批处理。

2、时间推导工具    而一旦提供了时间推导的工具,变完全超过了批处理。


总结来说,我们得到的会是一条条的,随着时间流逝不断增长的数据,我们需要进行实时的数据分析,我们要解决大数据量,灾备,时序,时间窗口,性能等等问题。

而实时,流式其实是相对的概念,现在的很多技术更应该说是近实时,微批。但只要能不断的优化这些问题,实时流式的计算的价值就会越来越大。


由于大数据兴起之初,Hadoop并没有给出实时计算解决方案,随后Storm,SparkStreaming,Flink等实时计算框架应运而生,而Kafka,ES的兴起使得实时计算领域的技术越来越完善,而随着物联网,机器学习等技术的推广,实时流式计算将在这些领域得到充分的应用。

下面简单介绍目前常用的几种应用场景,未来将对KafkaStorm,SparkStreaming,Flink等相关技术做具体介绍。


主要应用



1、日志分析

比如对网站的用户访问日志进行实时的分析,计算访问量,用户画像,留存率等等,实时的进行数据分析,帮助企业进行决策。

image.png


2、物联网

比如对电力系统进行实时的数据检测,进行报警,实时的显示,或者根据历史数据进行实时的分析,预测。

image.png

3、车联网

如今的车联网已经不限于物联网,还包括对用户,交通等等进行分析的一个庞大的系统,改善用户出行。

image.png


4、金融风控

通过对交易等金融行为实时分析,预测出未知风险。

image.png


还有很多应用的领域,而且未来会越来越多,在这个过程中具体的业务,以及与技术结合能产生什么样的价值,还需要不断的探索。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
传感器 大数据 数据处理
大数据处理中的流计算技术:实现实时数据处理与分析
【7月更文挑战第30天】随着分布式系统、云原生技术、数据安全与隐私保护技术的不断发展,流计算技术将在更多领域得到应用和推广,为大数据处理和分析提供更加高效、智能的解决方案。
|
5月前
|
边缘计算 搜索推荐 物联网
实时数据处理:流计算的兴起
【6月更文挑战第15天】**流计算兴起应对实时数据挑战:** 流计算是数字化时代实时数据处理的关键,它提供低延迟分析,确保数据产生时即进行处理。这种技术强调数据流的连续性,采用分布式架构实现高效、弹性且容错的数据处理。应用场景包括物联网分析、金融交易、日志监控及实时推荐系统。未来,流计算将融合AI、边缘计算,支持多源数据,并加强安全性,成为大数据处理的重要趋势。
|
5月前
|
存储 消息中间件 Kafka
Flink 实时数仓(一)【实时数仓&离线数仓对比】(1)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
5月前
|
存储 消息中间件 NoSQL
Flink 实时数仓(一)【实时数仓&离线数仓对比】(2)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
消息中间件 存储 Java
kafkaStream处理实时流式计算
kafkaStream处理实时流式计算
178 0
|
6月前
|
传感器 监控 Java
流计算中的数据延迟是什么?为什么它在流计算中很重要?
流计算中的数据延迟是什么?为什么它在流计算中很重要?
184 0
|
传感器 数据采集 监控
实时数仓的应用
实时数仓的应用
107 1
|
传感器 数据采集 监控
实时数仓的特点
实时数仓的特点
167 0
|
SQL 分布式计算 监控
漫谈实时数仓
漫谈实时数仓
388 0
漫谈实时数仓
|
存储 消息中间件 缓存
【实时数仓篇】(01)美团 Flink 实时数仓应用1
【实时数仓篇】(01)美团 Flink 实时数仓应用1
479 0
【实时数仓篇】(01)美团 Flink 实时数仓应用1