Java操作MongoDB(聚合函数)向Mongo插入及查询数据(上)

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: Java操作MongoDB(聚合函数)向Mongo插入及查询数据

数据库结果展示


插入后数据结构如下


20210623165119852.png

具体内容


20210623165157183.png


聚合函数(aggregate)


1.1 作用


用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果,是MongoDB的高级查询语言,它允许我们通过转换和合并多个文档中的数据来生成新的单个文档中不存在的信息


1.2 聚合管道


20210623165917395.png

1.2.1 $project实例

db.article.aggregate(
    { $project : {
        title : 1 ,
        author : 1 ,
    }}
 );

这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

db.article.aggregate(
    { $project : {
        _id : 0 ,
        title : 1 ,
        author : 1
    }});

1.2.2 $match实例

db.articles.aggregate( [
                        { $match : { score : { $gt : 70, $lte : 90 } } },
                        { $group: { _id: null, count: { $sum: 1 } } }
                       ] );

match7090group管道操作符进行处理。


1.2.3 $skip实例

db.article.aggregate(
    { $skip : 5 });


经过$skip管道操作符处理后,前五个文档被"过滤"掉


1.2.4 $group实例(按性别分组,计算年龄和)

db.user.aggregate([
    {$group:{
            _id:"$sex",
            num:{$sum:"$age"}
    }
}])

1.2.5 $limit: 限制经过管道的文档数量( $limit的参数只能是一个正整数)

db.article.aggregate({ $limit : 5 });

1.2.6 $unwind:将数组元素拆分为独立字段


例如:article文档中有一个名字为tags数组字段:

> db.article.find() {
"_id" : ObjectId("528751b0e7f3eea3d1412ce2"),
"author" : "Jone", "title" : "Abook",
"tags" : [  "good",  "fun",  "good" ] }

使用$unwind后:

> db.article.aggregate({$project:{author:1,title:1,tags:1}},{$unwind:"$tags"})
{
        "result" : [
                {
                        "_id" : ObjectId("528751b0e7f3eea3d1412ce2"),
                        "author" : "Jone",
                        "title" : "A book",
"tags" : "good"
                },
                {
                        "_id" : ObjectId("528751b0e7f3eea3d1412ce2"),
                        "author" : "Jone",
                        "title" : "A book",
"tags" : "fun"
                },
                {
                        "_id" : ObjectId("528751b0e7f3eea3d1412ce2"),
                        "author" : "Jone",
                        "title" : "A book",
  "tags" : "good"
                }
        ],
        "ok" : 1
}

1.2.7 $sort 实例

db.users.aggregate( { $sort : { age : -1, posts: 1 } });

1.3 组聚合操作符

20210623170849596.png

1.4 Boolean类型聚合操作符

20210623170926204.png

1.5 比较类型聚合操作符

20210623170954785.png

1.6 算术类型聚合操作符

20210623171028765.png

1.7 字符串类型聚合操作符

20210623171056577.png

1.8 日期类型聚合操作符

20210623171121366.png

1.9 条件类型聚合操作符


20210623171206379.png


注:以上操作符都必须在管道操作符的表达式内来使用。


各个表达式使用参照:http://docs.mongodb.org/manual/reference/operator/aggregation-group/

目录
相关文章
|
3月前
|
Java API 开发工具
【Azure Developer】Java代码实现获取Azure 资源的指标数据却报错 "invalid time interval input"
在使用 Java 调用虚拟机 API 获取指标数据时,因本地时区设置非 UTC,导致时间格式解析错误。解决方法是在代码中手动指定时区为 UTC,使用 `ZoneOffset.ofHours(0)` 并结合 `withOffsetSameInstant` 方法进行时区转换,从而避免因时区差异引发的时间格式问题。
209 3
|
4月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
4月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
239 16
|
8月前
|
自然语言处理 Java 关系型数据库
Java|小数据量场景的模糊搜索体验优化
在小数据量场景下,如何优化模糊搜索体验?本文分享一个简单实用的方案,虽然有点“土”,但效果还不错。
179 0
|
传感器 分布式计算 安全
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。
|
9月前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
9月前
|
存储 JSON NoSQL
微服务——MongoDB的数据模型
MongoDB采用文档(document)作为最小存储单位,类似关系型数据库中的行,使用BSON(Binary-JSON)格式存储数据。BSON是JSON的二进制扩展,支持内嵌文档和数组,新增了如Date、BinData等特殊数据类型,具有轻量、高效、可遍历的特点,适合非结构化与结构化数据存储。其灵活性高,但空间利用率略低。BSON数据类型包括string、integer、boolean等基本类型及date、object id等扩展类型。
239 0
|
5月前
|
NoSQL MongoDB 数据库
数据库数据恢复—MongoDB数据库数据恢复案例
MongoDB数据库数据恢复环境: 一台操作系统为Windows Server的虚拟机上部署MongoDB数据库。 MongoDB数据库故障: 工作人员在MongoDB服务仍然开启的情况下将MongoDB数据库文件拷贝到其他分区,数据复制完成后将MongoDB数据库原先所在的分区进行了格式化操作。 结果发现拷贝过去的数据无法使用。管理员又将数据拷贝回原始分区,MongoDB服务仍然无法使用,报错“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
5月前
|
缓存 NoSQL Linux
在CentOS 7系统中彻底移除MongoDB数据库的步骤
以上步骤完成后,MongoDB应该会从您的CentOS 7系统中被彻底移除。在执行上述操作前,请确保已经备份好所有重要数据以防丢失。这些步骤操作需要一些基本的Linux系统管理知识,若您对某一步骤不是非常清楚,请先进行必要的学习或咨询专业人士。在执行系统级操作时,推荐在实施前创建系统快照或备份,以便在出现问题时能够恢复到原先的状态。
431 79

推荐镜像

更多