【数据结构与算法】十大经典排序(c语言&Java)(2)

简介: 【数据结构与算法】十大经典排序(c语言&Java)(2)

🍌 希尔排序(Shell Sort)


image.png

简介:


1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。


设计思想:


先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:


选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;

按增量序列个数k,对序列进行k 趟排序;

每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

代码实现:


c语言版


void ShellSort(int *arr, int size)  
{  
    int i, j, tmp, increment;  
    for (increment = size/ 2; increment > 0; increment /= 2) {    
        for (i = increment; i < size; i++) {  
            tmp = arr[i];  
            for (j = i - increment; j >= 0 && tmp < arr[j]; j -= increment) {  
                arr[j + increment] = arr[j];  
            }  
            arr[j + increment] = tmp;
        }  
    }  
}  


Java版

 /**
     * 希尔排序
     * @param array
     * @return
     * @date 2022/01/20
     */
    public static int[] shellSort(int[] array){undefined
        if(array.length > 0){    
            int len = array.length;
            int gap = len / 2;
            while(gap > 0){undefined
                for(int i = gap;i < len;i++){undefined
                    int temp = array[i];
                    int index = i - gap;
                    while(index >= 0 && array[index] > temp){undefined
                        array[index + gap] = array[index];
                        index -= gap;
                    }
                    array[index + gap] = temp;
                }            
                gap /= 2;
            }
        }
        return array;
    }    


🥒 归并排序(Merge Sort)


image.png

简介:


归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer) 的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。


设计思想:


把长度为n的输入序列分成两个长度为n/2的子序列;

对这两个子序列分别采用归并排序;

将两个排序好的子序列合并成一个最终的排序序列。

代码实现:


c语言版


#define MAXSIZE 100  
void Merge(int *SR, int *TR, int i, int middle, int rightend) 
{
    int j, k, l;  
    for (k = i, j = middle + 1; i <= middle && j <= rightend; k++) {  
        if (SR[i] < SR[j]) {
            TR[k] = SR[i++];
        } else { 
            TR[k] = SR[j++];
        }  
    }  
    if (i <= middle) {
        for (l = 0; l <= middle - i; l++) {
            TR[k + l] = SR[i + l];
        }  
    }  
    if (j <= rightend) {
        for (l = 0; l <= rightend - j; l++) {
            TR[k + l] = SR[j + l];  
        }
    }  
}  
void MergeSort(int *SR, int *TR1, int s, int t) 
{  
    int middle;  
    int TR2[MAXSIZE + 1];  
    if (s == t) {
        TR1[s] = SR[s]; 
    } else {  
        middle = (s + t) / 2;
        MergeSort(SR, TR2, s, middle);
        MergeSort(SR, TR2, middle + 1, t);
        Merge(TR2, TR1, s, middle, t);
    }  
}  


Java

  /**
   * 2路归并算法
   * @param array
   * @return
     * @date 2022/01/20
   */
  public static int[] MergeSort(int[] array){
    if(array.length < 2){
      return array;
    }
    int mid = array.length /2;
    int[] left = Arrays.copyOfRange(array, 0, mid);
    int[] right = Arrays.copyOfRange(array, mid, array.length);
    return merge(MergeSort(left),MergeSort(right)); 
  }
  public static int[] merge(int[] left,int[] right){
    int[] result = new int[left.length + right.length];
    for(int index = 0,i = 0, j = 0;index < result.length;index++){
      if(i >= left.length){
        result[index] = right[j++];
      }else if(j >= right.length){
        result[index] = left[i++];
      }else if(left[i] > right[j]){
        result[index] = right[j++];
      }else{
        result[index] = left[i++];
      }
    }
    return result;
  }


相关文章
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
192 5
|
3月前
|
机器学习/深度学习 运维 算法
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
246 0
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
|
4月前
|
机器学习/深度学习 算法 安全
【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究(Matlab代码实现)
【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究(Matlab代码实现)
215 1
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
152 0
|
3月前
|
机器学习/深度学习 算法 安全
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)
107 0
|
4月前
|
机器学习/深度学习 算法 安全
【优化调度】基于matlab非支配排序遗传算法求解车辆充电调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab非支配排序遗传算法求解车辆充电调度优化问题研究(Matlab代码实现)
116 0
|
3月前
|
存储 算法 搜索推荐
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
专攻软考高频算法,深度解析二分查找、堆排序、快速排序核心技巧,对比九大排序算法,配套动画与真题,7天掌握45%分值模块。
162 1
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
3月前
|
供应链 算法 Java
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
122 1
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鱼鹰优化算法NSOOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鱼鹰优化算法NSOOA求解无人机三维路径规划研究(Matlab代码实现)