实现人脸识别、人脸68个特征点提取,或许这个 Python 库能帮到你

简介: 本次将借助于 dlib 程序包实现人脸区域检测、特征点提取等功能,dlib 封装了许多优秀的机器学习算法, 可实现人脸识别、检测、识别,视频目标追逐等功能,是由由 C++开发的一个开源程序库,目前也提供了 Python 接口,可供我们直接调用。

本次将借助于 dlib  程序包实现人脸区域检测、特征点提取等功能,

dlib 封装了许多优秀的机器学习算法, 可实现人脸识别、检测、识别,视频目标追逐等功能,是由由 C++开发的一个开源程序库,目前也提供了 Python 接口,可供我们直接调用。


1,dilb 安装

dlib 程序包的安装方式也是用 pip 来进行安装的,但不同于其它程序包的是,在输入

pip install dlib


之前,需要安装 Cmake 程序包,该工具主要是对 dlib 进行编译,安装命令与其他包类似

pip install Cmake


2,实现人脸识别

利用 dlib 实现人脸识别功能时,先定义一个检测器和一个 图片预览窗口:

detector = dlib.get_frontal_face_detector()
win = win = dlib.image_window()


之后利用  load_rgb_image()  函数读取图像:

img = dlib.load_rgb_image(f)


接下来进行核心功能人脸检测的实现,这里需要借助于上面定义得到的检测器

dets,score,idx = detector.run(img,1,-1)


img 就是我们读取后的图像,第二个参数 1 代表的是图片上采样倍数,值越大,最终识别得到的结果越好,-1 代表的是调整分割阈值,负值表示将返回更多检测结果


返回的 dets 返回的是一个人脸区域矩形,分别表示左,上、右、下边界,是 tuple 形式,如果检测出一个人脸,则为一个 tuple, 如果是多个人脸,将会把多个 tuple 放置在一个列表中;有个这个矩形坐标就可以做以下事情:

  • 人脸区域裁剪,进行区域提取;
  • 人脸区域线条标记

score  表示的是人脸识结果检测概率,越大代表识别出来的结果越好;如果一幅图有多个人脸,则返回多个检测概率以列表形式储存;idx 是用于在一副图检测出多个人脸是用的索引,可以对其进行索引

win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue


最后我们利用 前面定义的 win 窗口,进行图像预览,结果如下,

微信图片_20220520111926.jpgSnipaste_2020-06-01_23-43-59.png

当然也可以用 OpenCV 进行轮廓勾勒,OpenCV 勾勒结果如下( 有色差的原因是OpenCV 读取的是 BGR 通道顺序 );

微信图片_20220520111928.jpgSnipaste_2020-06-01_23-46-03.png


3,dlib 提取人脸68个特征点


OpenCV 也可以用于人脸识别,但效果不如 dlib ,除了上面提到的线框检测之外,dlib 还可以直接提取人脸上的 68 个特征点,作为坐标形式来返回;

有了这 68 个特征点的坐标,可以很方便地帮助我们实现人脸对齐、融合等应用,先看一下用 dlib 勾勒出来的效果

微信图片_20220520111930.jpgSnipaste_2020-06-02_14-48-24.png

与人脸识别不一样的是,这里需要加上一个形状检测器,形状检测器这里需要官网提供的文件、里面放置已经训练好的权重信息,可以直接使用,上面功能实现代码如下:

import dlib
import os
import cv2
predictor_path  = "E:/shape_predictor_68_face_landmarks.dat"#权重文件路径
png_path = "E:/ceshi.png"
detector = dlib.get_frontal_face_detector()
#相撞
predicator = dlib.shape_predictor(predictor_path)
win = dlib.image_window()
img =  dlib.load_rgb_image(png_path)
win.clear_overlay()
win.set_image(img1)
for k,d in enumerate(dets):
    print("Detection {}  left:{}  Top: {} Right {}  Bottom {}".format(
        k,d.left(),d.top(),d.right(),d.bottom()
    shape = predicator(img,d)
    #Get the landmarks/parts for face in box d
    print("Part 0:{},Part 1 :{}".format(shape.part(0),shape.part(1)))
    win.add_overlay(shape)
win.add_overlay(dets)
dlib.hit_enter_to_continue()


坐标点的获取可以通过 part(index) 函数获取

上面的坐标点,也可以通过 OpenCV 在原图上勾勒出来,并注释上文字,效果如下:

微信图片_20220520111932.jpgSnipaste_2020-06-02_15-02-38.png

附上完整代码:

import dlib
import os
import cv2
predictor_path  = "E:/shape_predictor_68_face_landmarks.dat"
png_path = "E:/ceshi.png"
detector = dlib.get_frontal_face_detector()
#相撞
predicator = dlib.shape_predictor(predictor_path)
win = dlib.image_window()
img1 = cv2.imread(png_path)
dets = detector(img1,1)
print("Number of faces detected : {}".format(len(dets)))
for k,d in enumerate(dets):
    print("Detection {}  left:{}  Top: {} Right {}  Bottom {}".format(
        k,d.left(),d.top(),d.right(),d.bottom()
    ))
    lanmarks = [[p.x,p.y] for p in predicator(img1,d).parts()]
    for idx,point in enumerate(lanmarks):
        point = (point[0],point[1])
        cv2.circle(img1,point,5,color=(0,0,255))
        font = cv2.FONT_HERSHEY_COMPLEX_SMALL
        cv2.putText(img1,str(idx),point,font,0.5,(0,255,0),1,cv2.LINE_AA)
        #对标记点进行递归;
cv2.namedWindow("img",cv2.WINDOW_NORMAL)
cv2.imshow("img",img1)
cv2.waitKey(0)


4,小总结

以上就是对 dlib 程序包的简单介绍,在人脸识别应用方面上 dlib 的表现相当不错的,有兴趣的同学可以去官网看关于 dlib 的详细介绍,自己闲余时间动手跟着敲一下。

相关文章
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
125 77
|
1月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
25天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
73 4
数据分析的 10 个最佳 Python 库
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
24天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
97 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
54 8
|
1月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
94 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4
下一篇
DataWorks