深度学习进阶:多分类与TensorFlow(一)

简介: 深度学习进阶:多分类与TensorFlow(一)

学习目标



  • 目标
  • 知道softmax回归的原理
  • 应用softmax_cross_entropy_with_logits实现softamx以及交叉熵损失计算
  • 应用matmul实现多隐层神经网络的计算


  • 应用
  • 应用TensorFlow完成Mnist手写数字势识别


到目前为止,我们所接触的都是二分类问题,神经网络输出层只有一个神经元,表示预测输出\hat{y}y^是正类的概率{P}(y=1|x), \hat{y} > {0.5}P(y=1∣x),y^>0.5则判断为正类,反之判断为负类。那么对于多分类问题怎么办?


2.1.1 Softmax 回归



对于多分类问题,用 N表示种类个数,那么神经网络的输出层的神经元个数必须为L[output]=N, 每个神经元的输出依次对应属于N个类别当中某个具体类别的概率,即 P(y=N_1|x),..,P(y=N_n|x)P(y=N1∣x),..,P(y=Nn∣x)。


输出层即:


Z^{[L]} = W^{[L]}a^{[L-1]} + b^{[L]}Z[L]=W[L]a[L−1]+b[L],Z的输出值个数为类别个数


需要对所有的输出结果进行一下softmax公式计算:


a^{[L]}_i = \frac{e^{Z^{[L]}_i}}{\sum^C_{i=1}e^{Z^{[L]}_i}}ai[L]=∑i=1CeZi[L]eZi[L],并且满足\sum^C_{i=1}a^{[L]}_i = 1∑i=1Cai[L]=1,我们来看一下计算案例:


image.png


2.1.2 交叉熵损失



对于softmax回归(逻辑回归代价函数的推广,都可称之为交叉熵损失),它的代价函数公式为:


L(\hat y, y) = -\sum^C_{j=1}y_jlog\hat y_jL(y^,y)=−∑j=1Cyjlogy^j


总损失函数可以记为J = \frac{1}{m}\sum^m_{i=1}L(\hat y, y)J=m1∑i=1mL(y^,y)


逻辑回归的损失也可以这样表示,:

image.png


所以与softmax是一样的,一个二分类一个多分类衡量。


对于真实值会进行一个one-hot编码,每一个样本的所属类别都会在某个类别位置上标记。


image.png


上图改样本的损失值为:


0log(0.10)+0log(0.05)+0log(0.15)+0log(0.10)+0log(0.05)+0log(0.20)+1log(0.10)+0log(0.05)+0log(0.10)+0log(0.10)0log(0.10)+0log(0.05)+0log(0.15)+0log(0.10)+0log(0.05)+0log(0.20)+1log(0.10)+0log(0.05)+0log(0.10)+0log(0.10)


注:关于one_hot编码


image.png


框架使用


  • 便于编程:包括神经网络的开发和迭代、配置产品;


  • 运行速度:特别是训练大型数据集时;


目前最火的深度学习框架大概是 Tensorflow 了。Tensorflow 框架内可以直接调用梯度下降算法,极大地降低了编程人员的工作量。例如以下代码:


2.1.3 案例:Mnist手写数字识别神经网络实现



2.1.3.1 数据集介绍


image.png


文件说明:


  • train-images-idx3-ubyte.gz: training set images (9912422 bytes)
  • train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
  • t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
  • t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)


网址:http://yann.lecun.com/exdb/mnist/


2.1.3.2 特征值


image.pngimage.png


2.1.3.3 目标值


image.png


 


目录
相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
基于深度学习的地面垃圾识别分类技术
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
113 5
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
104 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
65 3
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
106 0
|
27天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
117 5