数据结构与算法 03:时间复杂度 & 空间复杂度

简介: 数据结构与算法 03:时间复杂度 & 空间复杂度

衡量不同算法的优劣一般从以下两个方面去考量


  • 时间维度:是指执行当前算法所消耗的时间,通常用时间复杂度描述
  • 空间维度:是指执行当前算法需要占用的内存空间,通常用空间复杂度描述


所以,评价一个算法的效率主要是看它的时间复杂度空间复杂度


时间复杂度


一般情况下,算法中的基本操作语句的重复执行次数问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。记作T(n)= O( f(n) ),称O( f(n) )为算法的渐进时间复杂度,简称时间复杂度,主要有以下一些影响因素


  • 算法输入时间
  • 编译可执行代码的时间
  • 执行指令的时间
  • 执行重复指令的时间


这种用大写O()来表示的方式,称为大O时间复杂度表示法,这种方式并不具体表示代码真正执行的时间,而是表示代码执行时间随数据规模增长的变化趋势,也称为渐进时间复杂度,有以下一些规则


  • 1、用常数1 取代运行时间中所有的常数
  • 2、在修改运行次数函数中,只保留最高阶层
  • 3、如果在最高阶存在且不等于1,则去除这个项目相乘的常数

一般分析时间复杂度,有以下三种方式


  • 只关注循环执行次数最多的一段代码


  • 加法法则:总复杂度等于量级最大的那段代码的复杂度,如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).


  • 乘法准则【也可以理解为嵌套循环】:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积,如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).


常见的时间复杂度


常见的时间复杂度从小到大排序为:


O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) <O(2^n) < O(n!) < O(n^n)


下面简单举例说明下


  • 常数阶 O(1):只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。所以一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万的代码,其时间复杂度也是O(1)

image.png

对数阶 O(log2n)

image.png

线性阶 O(n)

image.png


  • 平方阶 O(n^2)
    如下所示,i=0,执行n次,i=1,执行n-1次,i=2,执行n-2次,所以是一个等差数列,即Sn = n(n-1)/2 = n^2/2 + n/2,用大 O(n^2)

image.png

平方阶


立方阶 O(n^3)

image.png

所以找时间复杂度最高的代码,即为关键代码


最好、最坏、平均、均摊时间复杂度


  • 最好:在最理想的情况下,执行这段代码的时间复杂度,即循环在第一次就可以找到它的位置
  • 最坏:在最糟糕的情况下,执行这段代码的时间复杂度,即循环在最后一次就可以找到它的位置,而一般大O表示法描述的是底线,即最坏的情况
  • 平均:为了方便理解,假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。其平均时间的计算方式如下:


image.png

  • 这个值就是概率论中的加权平均值,即期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度


均摊时间复杂度


均摊时间复杂度,以及它对应的分析方法,摊还分析(或者叫平摊分析),以下面这个插入算法为例,来了解什么是均摊时间复杂度

 // array表示一个长度为n的数组
 // 代码中的array.length就等于n
 int[] array = new int[n];
 int count = 0;
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }
    array[count] = val;
    ++count;
 }

假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是

image.png

因此,每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路均摊时间复杂度本质就是一种特殊的平均时间复杂度


空间复杂度


算法空间复杂度是指计算算法所需的存储空间, 其计算公式为S(n) = n(f(n)),n为问题的规模,f(n)为语句关于n所占存储空间的函数。所以在考察算法的空间复杂度,主要考虑算法执行所需要的辅助空间


下面以一个问题为例,来说明空间复杂度的计算


问题: 数组逆序,将一维v1.43数组a中的n个数逆序存放在原数组中.


针对这个问题,有以下两种算法:


  • 通过临时变量来做中间的交换:所需辅助空间为临时变量temp的空间,为O(1)
  • 先倒序存入一个数组b,在从b中依序存入a:所需的辅助空间 为 O(n)

image.png

解决问题的两种方式

相关文章
|
1月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
57 6
|
24天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
20 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
52 0
算法的时间复杂度和空间复杂度
|
1月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
|
26天前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
13 0
|
1月前
|
算法 C语言
深入理解算法效率:时间复杂度与空间复杂度
深入理解算法效率:时间复杂度与空间复杂度
|
18天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
下一篇
无影云桌面