【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析

简介: 【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析

一、算法效率

如下斐波那契数列的递归实现方式非常简洁,但是简洁一定好的吗?单纯通过代码的长度去衡量算法效率是不准确的。

long long Fib(int N)
{
if(N < 3)
    return 1;
    return Fib(N-1) + Fib(N-2);
}

1.1 算法的复杂度

算法是编写成可执行程序后,运行时需要消耗时间资源和空间资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度去考量,也是我们常说的时间复杂度和空间复杂度

  • 时间复杂度:衡量算法的运行快慢
  • 空间复杂度:衡量算法运行所需要的额外空间

二、时间复杂度与空间复杂度

在计算机发展的早期,计算机的存储容量很小,所以对空间复杂度是很在乎,但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度,所以如今不需要再特别关注一个算法的空间复杂度

2.1 时间复杂度

2.1.1 时间复杂度的概念

计算机科学中,算法的时间复杂度是一个函数,他定量描述了该算法的运行时间。一个算法执行所消耗的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了算法的时间复杂度。通过例子更好地说明。

void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N; ++i)
  {
    for (int j = 0; j < N; ++j)
    {
      ++count;
    }
  }
    
  for (int k = 0; k < 2 * N; ++k)
  {
    ++count;
  }
    
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}
int main()
{
    int N = 0;
    scanf("%d",&N);
  Func1 (N);
  return 0;
}

Func执行的基本操作次数:F(N) = N^2^+2 * N + 10;

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 100201

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需大概执行次数,那么这里我们使用大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为O(N2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N) ,由于大部分算法得到复杂度为O(log2N),但是这个下标2很难书写出来,对此将O(logN) 默认为O(log2N)表示

2.3 空间复杂度

空间复杂度是个数学表达式,是对于算法在运行过程中临时占用存储空间的量度。(使用常数个额外空间的话空间复杂度为O(1))

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

注意函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

练习:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
实例递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

三、常见复杂度对比

一般算法常见的复杂度





相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
62 6
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
24 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
29天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
19 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
29 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 存储 算法
【数据结构与算法基础】——算法复杂度
【数据结构与算法基础】——算法复杂度
|
1月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
14 0
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
18 0