算法与算法分析

简介: 算法与算法分析

算法与算法分析

算法是,对特定问题求解方法和步骤的一种描述,它是有限指令的有限序列,其中每个指令表示一个或多个操作。
### 算法与程序的比较

  • 算法是解决问题的一种方法或一个过程,考虑如何将输入转换成输出,一个问题可以有多种算法。
  • 程序是用某种程序设计语言对算法的具体实现。
  • 程序 = 数据结构 + 算法

算法的特性

一个算法必须具备以下五个重要特性:

  • 有穷性 一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
  • 确定性 算法中每一条指令必须有确切的含义,没有二义性,在任何条件下只有唯一的一条执行路径,即对相同的输入只能得到相同的输出。
  • 可行性 算法是可执行的,算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
  • 输入 一个算法有零个或多个输入
  • 输出 一个算法有一个或对个输出

算法设计有正确性(Correctness)、可读性(Readability)、健壮性(Robustness)、高效性(Efficiency)的基本要求。
一个好的算法首先要具备正确性,然后是健壮性,可读性,在几个方面都满足的情况下,主要考虑算法的效率,通过算法的效率高低来评判不同算法的优劣程度。

算法效率分析

算法效率主要从一下两个方面来考虑:

  1. 时间效率 :指的是算法所耗费的时间;
  2. 空间效率 : 指的是算法执行过程中所耗费的存储空间。

==时间效率和空间效率有时候是矛盾的。==

时间效率分析
一个算法在计算机上运行所耗费的时间大致可以等于计算机执行一种简单的操作(如赋值、比较、移动等)所需的时间与算法中进行简单操作次数的乘积。
算法运行时间 = 一个简单操作所需的时间 x 简单操作次数
也就是算法中每条语句的执行时间之和

每条语句执行一次所需的时间,一般是随机器而异的,取决于机器的指令性能速度以及编译的代码质量,是由机器本身软硬件环境决定的,它与算法无关。所以,可以假设执行每条语句所需的时间均为单位时间。 此时对算法的运行时间的讨论就可以转化为讨论改算法中所有语句的执行次数了。

例如:两个n x n矩阵相乘的算法课描述为:

for(i=1;i<=n;i++)                                  //n+1次
    for(j=1;j<=n;j++)                              //n(n+1)次
    {
        c[i][j]=0;                                 //n*n次
        for(k=0;k<n;k++)                           //n*n*(n+1)次
            c[i][j] = c[i][j]+a[i][k]*b[k][j];     //n*n*n次
    }

则上述算法的时间消耗==T(n) = 2n^3^ + 3n^2^ + 2n + 1==
注:为了便于比较两个算法的时间效率。我们仅仅比较他们的数量级。

时间复杂度

若有,有某个辅助函数f(n),使得当n趋近与无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,计作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号),简称时间复杂度

分析算法时间复杂度的基本方法

  1. 找出语句频度最大的那条语句作为==基本语句==
  2. 计算基本语句的频度得到问题规模n的某个函数f(n)
  3. 取其数量级用符号“O”表示

其中==基本语句==是指:

  • 算法中重复执行次数和算法的执行之间成正比的语句;
  • 对算法运行时间的贡献最大
  • 执行次数最多

对于复杂的算法,可以将它拆分成几个容易估算的部分,然后用加法法则和乘法法则计算时间复杂度:
a) 加法法则
T(n) = T1(n) + T2(n) = O(f(n)) + O(g(n)) = O(max(f(n),g(n)))

b)乘法法则
T(n) = T1(n) x T2(n) = O(f(n)) x O(g(n)) = O(f(n) x g(n))

算法时间效率的比较
在这里插入图片描述
可见,常数阶<对数阶<线性阶<线性对数阶<平方阶< ...<K方阶<指数阶

空间复杂度

算法所需存储空间的度量,记作: S(n) = O(f(n)) , n为问题的规模。

算法要占据的空间

  • 算法本身要占据的空间,输入/输出,指令,常数,变量等
  • 算法要使用的辅助空间
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
107 3
|
5月前
|
人工智能 算法 BI
第一周算法设计与分析 D : 两面包夹芝士
这篇文章介绍了解决算法问题"两面包夹芝士"的方法,通过找出两个数组中的最大最小值,计算这两个值之间的整数个数,包括特判不存在整数的情况。
|
16天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
25天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
33 6
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
79 1
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
4月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
78 4
|
4月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
87 1
|
4月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
276 19

热门文章

最新文章