阿里云机器学习平台PAI与香港大学合作论文入选INFOCOM 2022,有效减少大规模神经网络训练时间

简介: 近日,阿里云机器学习平台 PAI 与香港大学吴川教授团队合作的论文”Efficient Pipeline Planning for Expedited Distributed DNN Training”入选INFOCOM(IEEE International Conference on Computer Communications) 2022,论文提出了一个支持任意网络拓扑的同步流水线并行训练算法,有效减少大规模神经网络的训练时间。

近日,阿里云机器学习平台 PAI 与香港大学吴川教授团队合作的论文”Efficient Pipeline Planning for Expedited Distributed DNN Training”入选 INFOCOM(IEEE International Conference on Computer Communications) 2022,论文提出了一个支持任意网络拓扑的同步流水线并行训练算法,有效减少大规模神经网络的训练时间。


作为分布式机器学习的一种主流训练方式,流水线并行通过同时进行神经网络计算与中间数据通信,减少训练时间。一个典型的同步流水线并行方案包含模型切分设备部署与微批量(micro-batch)执行调度两个部分。  


以下的两个图给出了一个6层神经网络模型在4块 GPU 上进行同步流水线并行训练的示例。由图表1所示,模型被切分成三个片段,其中第二个片段由于其计算量较大,被复制到两个 GPU 上通过数据并行的方式训练。图表2表示模型的三个微批量的具体训练过程,其中,由于第二个片段以数据并行方法在 GPU2 和 GPU3 上训练,在全部微批量训练完成后通过 AllReduce 算子同步模型片段参数。

2.png

图表1模型切分设备部署

3.png

图表2微批量执行调度


然而,设计高效的流水线并行算法方案仍然存在诸多挑战,例如深度学习模型各异,每层的训练时间也不相同,因此难以找到最优的模型切分部署方案;当前的流水线并行算法局限于同质化的 GPU 间网络拓扑,而现实机器学习集群具有复杂的混合 GPU 间网络拓扑(例如,单个机器上的 GPU 可以通过 PCIe 或者 NVLink 连接,跨机通信可以基于 TCP 或者 RDMA),导致现有方案无法使用等,以上问题导致实际训练中的 GPU 使用效率低。


针对以上难点,团队提出了一个近似最优的同步流水线并行训练算法。算法由三个主要模块构成:

1) 一个基于递归最小割的 GPU 排序算法,通过分析 GPU 间网络拓扑确定 GPU 的模型部署顺序,保证最大化利用 GPU 间带宽;

2) 一个基于动态规划的模型切分部署算法,高效率找到最优的模型分割与部署方案,平衡模型在每个 GPU 上的运算时间与模型切片间的通信时间;

3) 一个近似最优的列表排序算法,决策每个微批量在各个 GPU 上的执行顺序,最小化模型的训练时间。  


从理论上对算法做出详尽分析,给出了算法的最坏情况保证。同时,在测试集群中实验证明团队的算法相对 PipeDream,可以取得最高157%的训练加速比。  


INFOCOM 是计算机网络三大顶级国际会议之一,涉及计算机网络领域的各个方面,在国际上享有盛誉且有广泛的学术影响力。此次入选意味着阿里云机器学习平台 PAI 在分布式深度学习模型训练优化领域的工作获得国际学界的广泛认可,进一步彰显了中国在分布式机器学习系统领域有着核心竞争力。  


阿里云机器学习 PAI 是面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,一站式的机器学习解决方案,全面提升机器学习工程效率。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
弹性计算 安全 应用服务中间件
阿里云渠道商:怎么配置阿里云网络ACL?
阿里云网络ACL是子网级无状态防火墙,支持精准流量控制、规则热生效且免费使用。本文详解5步配置流程,助您实现Web与数据库层的安全隔离,提升云上网络安全。
|
3月前
|
人工智能 安全 架构师
2025云栖大会 | 阿里云网络技术Session主题资料和视频回放归档
2025年9月24日-26日,杭州,一年一度的云栖大会如期而至;阿里云飞天洛神云网络作为阿里云计算的连接底座,是飞天云操作系统的核心组件,致力于为上云企业提供高可靠、高性能、高弹性、智能的连接服务。本次云栖,云网络产品线也带来全系列产品升级,以及创新技术重磅解读,围绕增强确定性、提效自动化、深耕智能化和敏捷全球化带来技术、产品和服务升级,以及全新的云网络产品生态合作计划发布。
575 2
|
4月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
284 10
|
4月前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
263 13
|
4月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
480 1
|
3月前
|
弹性计算 网络安全 数据中心
阿里云创建专有网络VPC的【IPv4网段】如何选择?有什么区别?
阿里云VPC创建时需选IPv4网段,默认提供10.0.0.0/16、172.16.0.0/16、192.168.0.0/16,三者无功能差异。若仅单VPC且不连本地数据中心,可任选其一,确保不冲突即可。多VPC或混合云场景需规划避免IP重叠。不支持100.64.0.0/10等特殊网段。建议结合IPAM进行地址管理。
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
594 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
589 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
1185 0

相关产品

  • 人工智能平台 PAI