Google Earth Engine(GEE)——利用sentinel-5P数据进行中国区域so2二氧化硫的2019-2020年差异分析

简介: Google Earth Engine(GEE)——利用sentinel-5P数据进行中国区域so2二氧化硫的2019-2020年差异分析

数据简介:

 

OFFL/L3_SO2

This dataset provides offline high-resolution imagery of atmospheric sulfur dioxide (SO2) concentrations.

Sulphur dioxide (SO2) enters the Earth’s atmosphere through both natural and anthropogenic processes. It plays a role in chemistry on a local and global scale and its impact ranges from short-term pollution to effects on climate. Only about 30% of the emitted SO2 comes from natural sources; the majority is of anthropogenic origin. SO2 emissions adversely affect human health and air quality. SO2 has an effect on climate through radiative forcing, via the formation of sulphate aerosols. Volcanic SO2 emissions can also pose a threat to aviation, along with volcanic ash. S5P/TROPOMI samples the Earth’s surface with a revisit time of one day with unprecedented spatial resolution of 3.5 x 7 km which allows the resolution of fine details including the detection of much smaller SO2 plumes. [More information]

For this L3 SO2 product, the absorbing_aerosol_index is calculated with a pair of measurements at the 340 nm and 380 wavelengths. The COPERNICUS/S5P/OFFL/L3_AER_AI product has the absorbing_aerosol_index calculated using the 354 nm and 388 nm wavelengths.

OFFL/L3_SO2


该数据集提供大气中二氧化硫(SO2)浓度的离线高分辨率图像。

二氧化硫(SO2)通过自然和人为的过程进入地球的大气层。它在地方和全球范围内的化学中起着作用,其影响范围从短期污染到对气候的影响。只有大约30%的二氧化硫排放来自于自然来源;大部分是人为的。二氧化硫的排放对人类健康和空气质量有不利影响。二氧化硫通过硫酸盐气溶胶的形成,通过辐射强迫对气候产生影响。火山SO2排放与火山灰一起也会对航空构成威胁。S5P/TROPOMI对地球表面进行采样,重访时间为一天,具有前所未有的3.5 x 7公里的空间分辨率,这使得对细微细节的分辨率包括对更小的SO2羽流的探测。[更多信息]

对于这个L3 SO2产品,吸收_气溶胶指数是用340纳米和380波长的一对测量值计算的。COPERNICUS/S5P/OFFL/L3_AER_AI产品的吸收气溶胶指数是用354纳米和388纳米波长计算的。

Dataset Availability

2018-12-05T11:53:01 -

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2")

Resolution

1113.2 meters

Bands Table

Name Description Min* Max* Units
SO2_column_number_density SO2 vertical column density at ground level, calculated using the DOAS technique. -0.4051 0.2079 mol/m^2
SO2_column_number_density_amf Weighted mean of cloudy and clear air mass factor (amf) weighted by intensity-weighted cloud fraction. 0.1 3.387 mol/m^2
SO2_slant_column_number_density SO2 ring corrected slant column number density -0.14746 0.16159 mol/m^2
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 340/380 wavelength pair. -11.733 18.657
cloud_fraction Effective cloud fraction. See the [Sentinel 5P L2 Input/Output Data Definition Spec](https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition), p.220. 0 1 fraction
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 67 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 102 degrees
SO2_column_number_density_15km SO2 vertical column density at 15km, calculated using the DOAS technique. mol/m^2


* = Values are estimated

代码:

// 分别定义两年的影响数据筛选
var y2019 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-02-01","2019-02-28");
var y2020 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2020-02-01","2020-02-28");
//获取中国边界
var countries = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017").filter(ee.Filter.eq("country_co", "CH"))
// 上色
var band_viz = {
  min: 0.0,
  max: 0.0005,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
//图层加载
Map.addLayer(y2019.max().select("SO2_column_number_density").clip(countries),band_viz," 2019");
Map.addLayer(y2020.max().select("SO2_column_number_density").clip(countries),band_viz," 2020");


结果:

图涉及中国区域没法展示,大家自己copy 代码去实现


目录
打赏
0
0
0
0
213
分享
相关文章
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3247 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
983 3
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
877 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
532 4
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
355 3
微服务守护神:Spring Cloud Sentinel,让你的系统在流量洪峰中稳如磐石!
【8月更文挑战第29天】Spring Cloud Sentinel结合了阿里巴巴Sentinel的流控、降级、熔断和热点规则等特性,为微服务架构下的应用提供了一套完整的流量控制解决方案。它能够有效应对突发流量,保护服务稳定性,避免雪崩效应,确保系统在高并发下健康运行。通过简单的配置和注解即可实现高效流量控制,适用于高并发场景、依赖服务不稳定及资源保护等多种情况,显著提升系统健壮性和用户体验。
162 1
|
10月前
|
使用Sentinel进行服务调用的熔断和限流管理(SpringCloud2023实战)
Sentinel是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
251 3
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
40岁老架构师尼恩分享了关于SpringCloud核心组件的底层原理,特别是针对蚂蚁集团面试中常见的面试题进行了详细解析。内容涵盖了Nacos注册中心的AP/CP模式、Distro和Raft分布式协议、Sentinel的高可用组件、负载均衡组件的实现原理等。尼恩强调了系统化学习的重要性,推荐了《尼恩Java面试宝典PDF》等资料,帮助读者更好地准备面试,提高技术实力,最终实现“offer自由”。更多技术资料和指导,可关注公众号【技术自由圈】获取。
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
SpringCloud基础5——微服务保护、Sentinel
sentinel、雪崩问题、流量控制、隔离和降级、授权规则、规则持久化
SpringCloud基础5——微服务保护、Sentinel

热门文章

最新文章