Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)

简介: Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)

The NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard seven NOAA polar orbiting satellites. The data are gridded at a resolution of 0.05° and computed globally over land surfaces.

Known issues with this dataset include:

  • TIMEOFDAY variable contains values that are too large by 1 day
  • Latitude values are not correctly associated with the center of the grid cell, error is < 0.002 degrees
  • Longitude values are not correctly associated with the center of the grid cell, error is < 0.02 degrees

See technical note from the data provider.


NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)传感器。这些数据以0.05°的分辨率进行网格化处理,在全球范围内对陆地表面进行计算。

这个数据集的已知问题包括。

TIMEOFDAY变量包含的数值大了1天。

纬度值与网格单元中心的关联不正确,误差<0.002度

经度值与网格单元的中心没有正确关联,误差<0.02度

见数据提供者的技术说明。

Dataset Availability

1981-06-24T00:00:00 - 2019-05-16T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/CDR/AVHRR/SR/V4")

Resolution

5566 meters

Bands Table

Name Description Min* Max* Units Wavelength Scale
SREFL_CH1 Bidirectional surface reflectance 1 10000 640nm 0.0001
SREFL_CH2 Bidirectional surface reflectance 1 10000 860nm 0.0001
SREFL_CH3 Bidirectional surface reflectance -32768 32767 3.75μm 0.0001
BT_CH3 Brightness temperature -32519 30136 K 3.75μm 0.1
BT_CH4 Brightness temperature -32519 31450 K 11.0μm 0.1
BT_CH5 Brightness temperature -7623 18788 K 12.0μm 0.1
TIMEOFDAY Hours since start of day 0 2399 hours 0.01
RELAZ Relative sensor azimuth angle -32768 32767 Degrees 0.01
SZEN Solar zenith angle 219 8546 Degrees 0.01
VZEN View zenith angle, scale 0.01 0 6936 Degrees 0.01
QA Quality control bit flags 0
QA Bitmask
  • Bit 0: Unused
    • 0: No
    • 1: Yes
  • Bit 1: Pixel is cloudy
    • 0: No
    • 1: Yes
  • Bit 2: Pixel contains cloud shadow
    • 0: No
    • 1: Yes
  • Bit 3: Pixel is over water
    • 0: No
    • 1: Yes
  • Bit 4: Pixel is over sunglint
    • 0: No
    • 1: Yes
  • Bit 5: Pixel is over dense dark vegetation
    • 0: No
    • 1: Yes
  • Bit 6: Pixel is at night (high solar zenith)
    • 0: No
    • 1: Yes
  • Bit 7: Channels 1-5 are valid
    • 0: No
    • 1: Yes
  • Bit 8: Channel 1 value is invalid
    • 0: No
    • 1: Yes
  • Bit 9: Channel 2 value is invalid
    • 0: No
    • 1: Yes
  • Bit 10: Channel 3 value is invalid
    • 0: No
    • 1: Yes
  • Bit 11: Channel 4 value is invalid
    • 0: No
    • 1: Yes
  • Bit 12: Channel 5 value is invalid
    • 0: No
    • 1: Yes
  • Bit 13: RHO3 value is invalid
    • 0: No
    • 1: Yes
  • Bit 14: BRDF correction is invalid
    • 0: No
    • 1: Yes
  • Bit 15: Polar flag, latitude over 60 degrees (land) or 50 degrees (ocean)
    • 0: No
    • 1: Yes

* = Values are estimated

影像属性:

Name Type Description
status String 'provisional' or 'permanent'


数据说明:

The NOAA CDR Program’s official distribution point for CDRs is NOAA’s National Climatic Data Center which provides sustained, open access and active data management of the CDR packages and related information in keeping with the United States’ open data policies and practices as described in the President's Memorandum on "Open Data Policy" and pursuant to the Executive Order of May 9, 2013, "Making Open and Machine Readable the New Default for Government Information". In line with these policies, the CDR data sets are nonproprietary, publicly available, and no restrictions are placed upon their use. For more information, see the Fair Use of NOAA's CDR Data Sets, Algorithms and Documentation pdf.


引用:

Eric Vermote, Chris Justice, Ivan Csiszar, Jeff Eidenshink, Ranga Myneni, Frederic Baret, Ed Masuoka, Robert Wolfe, Martin Claverie and NOAA CDR Program (2014): NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4. [indicate subset used]. NOAA National Climatic Data Center.NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4 (Version Superseded)


代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/SR/V4')
                  .filter(ee.Filter.date('2018-05-01', '2018-06-01'));
var surfaceReflectance = dataset.select('SREFL_CH1');
var surfaceReflectanceVis = {
  min: -1000.0,
  max: 9000.0,
  palette: ['003b02', '006a03', '008d05', '01be07', '01ff09', 'ffffff'],
};
Map.setCenter(52.48, 71.72, 0);
Map.addLayer(surfaceReflectance, surfaceReflectanceVis, 'Surface Reflectance');

Dataset Availability

1981-06-24T00:00:00 - 2021-09-28T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/CDR/AVHRR/SR/V5")

代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/SR/V5')
                  .filter(ee.Filter.date('2018-05-01', '2018-06-01'));
var surfaceReflectance = dataset.select('SREFL_CH1');
var surfaceReflectanceVis = {
  min: -1000.0,
  max: 9000.0,
  palette: ['003b02', '006a03', '008d05', '01be07', '01ff09', 'ffffff'],
};
Map.setCenter(52.48, 71.72, 1);
Map.addLayer(surfaceReflectance, surfaceReflectanceVis, 'Surface Reflectance');

 


目录
打赏
0
0
0
0
207
分享
相关文章
Google Earth Engine(GEE)——来自陆地卫星的全球河流宽度(GRWL)
Google Earth Engine(GEE)——来自陆地卫星的全球河流宽度(GRWL)
107 0
Google Earth Engine(GEE)——OSM水图层 OpenStreetMap中的全球地表水数据集(90m分辨率)
Google Earth Engine(GEE)——OSM水图层 OpenStreetMap中的全球地表水数据集(90m分辨率)
137 0
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
285 0
Google Earth Engine(GEE)——加拿大森林生态系统的高分辨率年度林地覆盖图(1984-2019)
Google Earth Engine(GEE)——加拿大森林生态系统的高分辨率年度林地覆盖图(1984-2019)
84 0
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
141 0
Google Earth Engine(GEE)——北美当前和预测的气候数据
Google Earth Engine(GEE)——北美当前和预测的气候数据
141 0
Google Earth Engine(GEE)——基于粮农组织秘鲁Penman-Monteith的参考ET网格化数据库(PISCOeo_pm)
Google Earth Engine(GEE)——基于粮农组织秘鲁Penman-Monteith的参考ET网格化数据库(PISCOeo_pm)
55 0
Google Earth Engine(GEE)——美国西部的植被干燥度5天的时间分辨率和250米的空间分辨率
Google Earth Engine(GEE)——美国西部的植被干燥度5天的时间分辨率和250米的空间分辨率
72 0
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2924 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
127 0