Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集

本次介绍三个数据集


CHILI

CHILI is a surrogate for effects of insolation and topographic shading on evapotranspiration represented by calculating insolation at early afternoon, sun altitude equivalent to equinox. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).

The ALOS Landform dataset provides landform classes created by combining the Continuous Heat-Insolation Load Index (CHILI) and the multi-scale Topographic Position Index (mTPI) datasets. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).


Topographic diversity (D) is a surrogate variable that represents the variety of temperature and moisture conditions available to species as local habitats. It expresses the logic that a higher variety of topo-climate niches should support higher diversity (especially plant) and support species persistence given climatic change.

To calculate D, the multi-scale Topographic Position Index (mTPI), being a dominant control of soil moisture (T), was used for measuring hillslope position. The mTPI was combined with the square-root transform for mTPI>0 (T’) and with the standard deviation of the Continuous Heat-Insolation Load Index (CHILI), calculated at multiple scales (C’) as: D = 1 – ((1-T’) * (1-C’). It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).

The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology (ERGo) Datasets, Landforms and Physiography contain detailed, multi-scale data on landforms and physiographic (aka land facet) patterns. Although there are many potential uses of these data, the original purpose for these data was to develop an ecologically relevant classification and map of landforms and physiographic classes that are suitable for climate adaptation planning. Because there is large uncertainty associated with future climate conditions and even more uncertainty around ecological responses, providing information about what is unlikely to change offers a strong foundation for managers to build robust climate adaptation plans. The quantification of these features of the landscape is sensitive to the resolution, so we provide the highest resolution possible given the extent and characteristics of a given index.


CHILI是日照和地形遮挡对蒸发量影响的替代物,通过计算下午早期的日照,太阳高度相当于赤道。它基于美国地质调查局的10米NED DEM(在EE中可作为USGS/NED)。

ALOS地貌数据集提供了通过结合连续热-日照负荷指数(CHILI)和多尺度地形位置指数(mTPI)数据集创建的地貌类别。它是基于美国地质调查局的10米NED DEM(在EE中以USGS/NED的形式提供)。


地形多样性(D)是一个替代变量,代表了物种作为当地栖息地可用的各种温度和湿度条件。它所表达的逻辑是,较多的地形气候龛位应支持较高的多样性(尤其是植物),并在气候变化的情况下支持物种的持续存在。


为了计算D,多尺度地形位置指数(mTPI),作为土壤水分(T)的主要控制因素,被用于测量山坡位置。mTPI与mTPI>0时的方根变换(T')和连续热阻负荷指数(CHILI)的标准差相结合,在多尺度下计算(C')。D=1-((1-T')*(1-C')。它是基于美国地质调查局的10米NED DEM(在EE中以USGS/NED的名义提供)。


保护科学伙伴(CSP)的生态相关地貌(ERGo)数据集、地貌和地形学包含详细的、多尺度的地貌和地形学(又称土地面)模式数据。尽管这些数据有许多潜在的用途,但这些数据的最初目的是开发适合气候适应规划的生态相关的地貌和自然地理类别的分类和地图。因为未来的气候条件有很大的不确定性,围绕生态反应的不确定性甚至更大,提供有关不太可能改变的信息,为管理者建立强大的气候适应计划提供了坚实的基础。景观的这些特征的量化对分辨率很敏感,所以我们在给定指数的范围和特征的情况下,提供尽可能高的分辨率。


US NED CHILI (Continuous Heat-Insolation Load Index)

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/US/CHILI")

Resolution

10 meters

Bands Table

Name Description Min Max
constant NED-derived CHILI index ranging from 0 (very cool) to 255 (very warm). This was rescaled from the [0,1] range in the publication. 0 255

var dataset = ee.Image('CSP/ERGo/1_0/US/CHILI');
var usChili = dataset.select('constant');
var usChiliVis = {
  min: 0.0,
  max: 255.0,
};
Map.setCenter(-105.8636, 40.3439, 11);
Map.addLayer(usChili, usChiliVis, 'US CHILI');

US NED Landforms

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

Copied

ee.Image("CSP/ERGo/1_0/US/landforms")

Resolution

10 meters

Bands Table

Name Description
constant NED-derived landform classes

Class Table: constant

Value Color Color Value Description
11 #141414 Peak/ridge (warm)
12 #383838 Peak/ridge
13 #808080 Peak/ridge (cool)
14 #EBEB8F Mountain/divide
15 #F7D311 Cliff
21 #AA0000 Upper slope (warm)
22 #D89382 Upper slope
23 #DDC9C9 Upper slope (cool)
24 #DCCDCE Upper slope (flat)
31 #1C6330 Lower slope (warm)
32 #68AA63 Lower slope
33 #B5C98E Lower slope (cool)
34 #E1F0E5 Lower slope (flat)
41 #a975ba Valley
42 #6f198c Valley (narrow)
var dataset = ee.Image('CSP/ERGo/1_0/US/landforms');
var landforms = dataset.select('constant');
var landformsVis = {
  min: 11.0,
  max: 42.0,
  palette: [
    '141414', '383838', '808080', 'EBEB8F', 'F7D311', 'AA0000', 'D89382',
    'DDC9C9', 'DCCDCE', '1C6330', '68AA63', 'B5C98E', 'E1F0E5', 'a975ba',
    '6f198c'
  ],
};
Map.setCenter(-105.58, 40.5498, 11);
Map.addLayer(landforms, landformsVis, 'Landforms');


US NED Topographic Diversity

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

var dataset = ee.Image('CSP/ERGo/1_0/US/lithology');
var lithology = dataset.select('b1');
var lithologyVis = {
  min: 0.0,
  max: 20.0,
  palette: [
    '356EFF', 'ACB6DA', 'D6B879', '313131', 'EDA800', '616161', 'D6D6D6',
    'D0DDAE', 'B8D279', 'D5D378', '141414', '6DB155', '9B6D55', 'FEEEC9',
    'D6B879', '00B7EC', 'FFDA90', 'F8B28C'
  ],
};
Map.setCenter(-105.8636, 40.3439, 11);
Map.addLayer(lithology, lithologyVis, 'Lithology');

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/US/topoDiversity")

Resolution

90 meters

Bands Table

Name Description Min* Max*
constant NED-derived topographic diversity 0 1

* = Values are estimated


相关文章
|
1月前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
170 49
|
27天前
|
XML JSON JavaScript
HttpGet 请求的响应处理:获取和解析数据
HttpGet 请求的响应处理:获取和解析数据
|
1月前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
118 0
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2712 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
103 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
168 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
296 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0

推荐镜像

更多