Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集

本次介绍三个数据集


CHILI

CHILI is a surrogate for effects of insolation and topographic shading on evapotranspiration represented by calculating insolation at early afternoon, sun altitude equivalent to equinox. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).

The ALOS Landform dataset provides landform classes created by combining the Continuous Heat-Insolation Load Index (CHILI) and the multi-scale Topographic Position Index (mTPI) datasets. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).


Topographic diversity (D) is a surrogate variable that represents the variety of temperature and moisture conditions available to species as local habitats. It expresses the logic that a higher variety of topo-climate niches should support higher diversity (especially plant) and support species persistence given climatic change.

To calculate D, the multi-scale Topographic Position Index (mTPI), being a dominant control of soil moisture (T), was used for measuring hillslope position. The mTPI was combined with the square-root transform for mTPI>0 (T’) and with the standard deviation of the Continuous Heat-Insolation Load Index (CHILI), calculated at multiple scales (C’) as: D = 1 – ((1-T’) * (1-C’). It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).

The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology (ERGo) Datasets, Landforms and Physiography contain detailed, multi-scale data on landforms and physiographic (aka land facet) patterns. Although there are many potential uses of these data, the original purpose for these data was to develop an ecologically relevant classification and map of landforms and physiographic classes that are suitable for climate adaptation planning. Because there is large uncertainty associated with future climate conditions and even more uncertainty around ecological responses, providing information about what is unlikely to change offers a strong foundation for managers to build robust climate adaptation plans. The quantification of these features of the landscape is sensitive to the resolution, so we provide the highest resolution possible given the extent and characteristics of a given index.


CHILI是日照和地形遮挡对蒸发量影响的替代物,通过计算下午早期的日照,太阳高度相当于赤道。它基于美国地质调查局的10米NED DEM(在EE中可作为USGS/NED)。

ALOS地貌数据集提供了通过结合连续热-日照负荷指数(CHILI)和多尺度地形位置指数(mTPI)数据集创建的地貌类别。它是基于美国地质调查局的10米NED DEM(在EE中以USGS/NED的形式提供)。


地形多样性(D)是一个替代变量,代表了物种作为当地栖息地可用的各种温度和湿度条件。它所表达的逻辑是,较多的地形气候龛位应支持较高的多样性(尤其是植物),并在气候变化的情况下支持物种的持续存在。


为了计算D,多尺度地形位置指数(mTPI),作为土壤水分(T)的主要控制因素,被用于测量山坡位置。mTPI与mTPI>0时的方根变换(T')和连续热阻负荷指数(CHILI)的标准差相结合,在多尺度下计算(C')。D=1-((1-T')*(1-C')。它是基于美国地质调查局的10米NED DEM(在EE中以USGS/NED的名义提供)。


保护科学伙伴(CSP)的生态相关地貌(ERGo)数据集、地貌和地形学包含详细的、多尺度的地貌和地形学(又称土地面)模式数据。尽管这些数据有许多潜在的用途,但这些数据的最初目的是开发适合气候适应规划的生态相关的地貌和自然地理类别的分类和地图。因为未来的气候条件有很大的不确定性,围绕生态反应的不确定性甚至更大,提供有关不太可能改变的信息,为管理者建立强大的气候适应计划提供了坚实的基础。景观的这些特征的量化对分辨率很敏感,所以我们在给定指数的范围和特征的情况下,提供尽可能高的分辨率。


US NED CHILI (Continuous Heat-Insolation Load Index)

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/US/CHILI")

Resolution

10 meters

Bands Table

Name Description Min Max
constant NED-derived CHILI index ranging from 0 (very cool) to 255 (very warm). This was rescaled from the [0,1] range in the publication. 0 255

var dataset = ee.Image('CSP/ERGo/1_0/US/CHILI');
var usChili = dataset.select('constant');
var usChiliVis = {
  min: 0.0,
  max: 255.0,
};
Map.setCenter(-105.8636, 40.3439, 11);
Map.addLayer(usChili, usChiliVis, 'US CHILI');

US NED Landforms

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

Copied

ee.Image("CSP/ERGo/1_0/US/landforms")

Resolution

10 meters

Bands Table

Name Description
constant NED-derived landform classes

Class Table: constant

Value Color Color Value Description
11 #141414 Peak/ridge (warm)
12 #383838 Peak/ridge
13 #808080 Peak/ridge (cool)
14 #EBEB8F Mountain/divide
15 #F7D311 Cliff
21 #AA0000 Upper slope (warm)
22 #D89382 Upper slope
23 #DDC9C9 Upper slope (cool)
24 #DCCDCE Upper slope (flat)
31 #1C6330 Lower slope (warm)
32 #68AA63 Lower slope
33 #B5C98E Lower slope (cool)
34 #E1F0E5 Lower slope (flat)
41 #a975ba Valley
42 #6f198c Valley (narrow)
var dataset = ee.Image('CSP/ERGo/1_0/US/landforms');
var landforms = dataset.select('constant');
var landformsVis = {
  min: 11.0,
  max: 42.0,
  palette: [
    '141414', '383838', '808080', 'EBEB8F', 'F7D311', 'AA0000', 'D89382',
    'DDC9C9', 'DCCDCE', '1C6330', '68AA63', 'B5C98E', 'E1F0E5', 'a975ba',
    '6f198c'
  ],
};
Map.setCenter(-105.58, 40.5498, 11);
Map.addLayer(landforms, landformsVis, 'Landforms');


US NED Topographic Diversity

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

var dataset = ee.Image('CSP/ERGo/1_0/US/lithology');
var lithology = dataset.select('b1');
var lithologyVis = {
  min: 0.0,
  max: 20.0,
  palette: [
    '356EFF', 'ACB6DA', 'D6B879', '313131', 'EDA800', '616161', 'D6D6D6',
    'D0DDAE', 'B8D279', 'D5D378', '141414', '6DB155', '9B6D55', 'FEEEC9',
    'D6B879', '00B7EC', 'FFDA90', 'F8B28C'
  ],
};
Map.setCenter(-105.8636, 40.3439, 11);
Map.addLayer(lithology, lithologyVis, 'Lithology');

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/US/topoDiversity")

Resolution

90 meters

Bands Table

Name Description Min* Max*
constant NED-derived topographic diversity 0 1

* = Values are estimated


目录
打赏
0
0
0
0
213
分享
相关文章
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3265 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
155 0
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
362 0
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
11月前
|
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
172 0
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
363 0
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
170 29
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等