☆打卡算法☆LeetCode 87、扰乱字符串 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定一个规则,将字符串s扰乱得到字符串s。”

一、题目


1、算法题目

“给定一个规则,将字符串s扰乱得到字符串s。”

题目链接:

来源:力扣(LeetCode)

链接:87. 扰乱字符串 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

使用下面描述的算法可以扰乱字符串 s 得到字符串 t :

  • 如果字符串的长度为 1 ,算法停止
  • 如果字符串的长度 > 1 ,执行下述步骤:
  • 在一个随机下标处将字符串分割成两个非空的子字符串。即,如果已知字符串 s ,则可以将其分成两个子字符串 x 和 y ,且满足 s = x + y 。
  • 随机 决定是要「交换两个子字符串」还是要「保持这两个子字符串的顺序不变」。即,在执行这一步骤之后,s 可能是 s = x + y 或者 s = y + x 。
  • 在 x 和 y 这两个子字符串上继续从步骤 1 开始递归执行此算法。

给你两个 长度相等 的字符串 s1 和 s2,判断 s2 是否是 s1 的扰乱字符串。如果是,返回 true ;否则,返回 false 。

来源:力扣(LeetCode) 链接:leetcode-cn.com/problems/sc…著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

示例 1:
输入:s1 = "great", s2 = "rgeat"
输出:true
解释:s1 上可能发生的一种情形是:
"great" --> "gr/eat" // 在一个随机下标处分割得到两个子字符串
"gr/eat" --> "gr/eat" // 随机决定:「保持这两个子字符串的顺序不变」
"gr/eat" --> "g/r / e/at" // 在子字符串上递归执行此算法。两个子字符串分别在随机下标处进行一轮分割
"g/r / e/at" --> "r/g / e/at" // 随机决定:第一组「交换两个子字符串」,第二组「保持这两个子字符串的顺序不变」
"r/g / e/at" --> "r/g / e/ a/t" // 继续递归执行此算法,将 "at" 分割得到 "a/t"
"r/g / e/ a/t" --> "r/g / e/ a/t" // 随机决定:「保持这两个子字符串的顺序不变」
算法终止,结果字符串和 s2 相同,都是 "rgeat"
这是一种能够扰乱 s1 得到 s2 的情形,可以认为 s2 是 s1 的扰乱字符串,返回 true
复制代码
示例 2:
输入: s1 = "abcde", s2 = "caebd"
输出: false
复制代码


二、解题


1、思路分析

这道题根据题意判断,扰乱字符串的关系是具有对称性的,即如果字符串s得到扰乱字符串t,那么s也是t的扰乱字符串,这种情况是属于相似的。

这时候就有两种情况:

  • t和s长度不一样,必定不能转化而来,返回false。
  • 长度一样,判断两个字符串是否是互为扰乱字符串,是返回true,不是返回false。


2、代码实现

代码参考:

class Solution {
    // 记忆化搜索存储状态的数组
    // -1 表示 false,1 表示 true,0 表示未计算
    int[][][] memo;
    String s1, s2;
    public boolean isScramble(String s1, String s2) {
        int length = s1.length();
        this.memo = new int[length][length][length + 1];
        this.s1 = s1;
        this.s2 = s2;
        return dfs(0, 0, length);
    }
    // 第一个字符串从 i1 开始,第二个字符串从 i2 开始,子串的长度为 length,是否和谐
    public boolean dfs(int i1, int i2, int length) {
        if (memo[i1][i2][length] != 0) {
            return memo[i1][i2][length] == 1;
        }
        // 判断两个子串是否相等
        if (s1.substring(i1, i1 + length).equals(s2.substring(i2, i2 + length))) {
            memo[i1][i2][length] = 1;
            return true;
        }
        // 判断是否存在字符 c 在两个子串中出现的次数不同
        if (!checkIfSimilar(i1, i2, length)) {
            memo[i1][i2][length] = -1;
            return false;
        }
        // 枚举分割位置
        for (int i = 1; i < length; ++i) {
            // 不交换的情况
            if (dfs(i1, i2, i) && dfs(i1 + i, i2 + i, length - i)) {
                memo[i1][i2][length] = 1;
                return true;
            }
            // 交换的情况
            if (dfs(i1, i2 + length - i, i) && dfs(i1 + i, i2, length - i)) {
                memo[i1][i2][length] = 1;
                return true;
            }
        }
        memo[i1][i2][length] = -1;
        return false;
    }
    public boolean checkIfSimilar(int i1, int i2, int length) {
        Map<Character, Integer> freq = new HashMap<Character, Integer>();
        for (int i = i1; i < i1 + length; ++i) {
            char c = s1.charAt(i);
            freq.put(c, freq.getOrDefault(c, 0) + 1);
        }
        for (int i = i2; i < i2 + length; ++i) {
            char c = s2.charAt(i);
            freq.put(c, freq.getOrDefault(c, 0) - 1);
        }
        for (Map.Entry<Character, Integer> entry : freq.entrySet()) {
            int value = entry.getValue();
            if (value != 0) {
                return false;
            }
        }
        return true;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n4)

其中n是给定原始字符串的长度。

空间复杂度: O(n3))

存储所有状态需要的空间。


三、总结

这道题的解法是将大问题分解成小问题。

大问题:如何判断两个字符串是否是扰乱字符串

首先,判断长度,长度不一致就肯定返回false。

在长度一致的时候再去分割字符串去判断字符串中的元素的是否一致,这样一来就将大问题分解成规模更小的子问题。

然后使用动态规划去解题。



目录
打赏
0
0
0
0
6
分享
相关文章
|
23天前
|
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
85 15
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
189 90
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
108 10
|
16天前
|
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
76 9
|
20天前
|
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
49 9
|
24天前
|
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
70 10
|
22天前
|
【LeetCode 热题100】394:字符串解码(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 394:字符串解码。题目要求对编码字符串如 `k[encoded_string]` 进行解码,其中 `encoded_string` 需重复 `k` 次。文章提供了两种解法:使用栈模拟和递归 DFS,并附有 Go 语言实现代码。栈解法通过数字栈与字符串栈记录状态,适合迭代;递归解法则利用函数调用处理嵌套结构,代码更简洁。两者时间复杂度均为 O(n),但递归需注意栈深度问题。文章还总结了解题注意事项及适用场景,帮助读者更好地掌握字符串嵌套解析技巧。
40 6
【LeetCode 热题100】139:单词拆分(动态规划全解析+细节陷阱)(Go语言版)
本题是 LeetCode 热题 139:单词拆分(Word Break),需判断字符串 `s` 是否能由字典 `wordDict` 中的单词拼接而成。通过动态规划(DP)或记忆化搜索解决。DP 中定义布尔数组 `dp[i]` 表示前 `i` 个字符是否可拆分,状态转移方程为:若存在 `j` 使 `dp[j]=true` 且 `s[j:i]` 在字典中,则 `dp[i]=true`。初始条件 `dp[0]=true`。代码实现中用哈希集合优化查找效率。记忆化搜索则从起始位置递归尝试所有切割点。两种方法各有利弊,DP 更适合面试场景。思考扩展包括输出所有拆分方式及使用 Trie 优化大字典查找。
54 6
|
24天前
|
【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)
本篇解析详细讲解了 LeetCode 热题 55——跳跃游戏(Jump Game)。通过判断是否能从数组起点跳至终点,介绍了两种高效解法:贪心算法和反向思维。贪心法通过维护最远可达位置 `maxReach` 实现一次遍历,时间复杂度 O(n),空间复杂度 O(1);反向法则从终点回溯,判断是否可到达起点。两者均简洁高效,适合面试使用。延伸题目如 LeetCode 45 进一步提升挑战。
68 7
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
61 14

热门文章

最新文章

推荐镜像

更多