【Java】如何提高算法效率——时间复杂度和空间复杂度(一)

简介: 当我们学习编程语言到达一定程度之后,就会开始注重代码的效率,这时候就会开始研究算法这么个东西,算法顾名思义就是计算方法,就好比你做一道数学题,有简单的办法也有麻烦的办法,但是简单的办法不好理解,在代码里这个叫做可读性差,而麻烦的办法虽然麻烦,但是方便理解,可读性好。在算法里也有两个很重要的因素,时间复杂度和空间复杂度,不同的算法有不同的特点,根据需求应用合适的算法,才是真正提高代码效率的真谛,请往下看

算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。
时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。
所以对空间复杂度很是在乎。
但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它=定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

大O的渐进表示法

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
  int count = 0;
  for (int i = 0; i < N ; i++) {
      for (int j = 0; j < N ; j++) {
          count++;
      }
  }
  for (int k = 0; k < 2 * N ; k++) {
      count++;
  }
  int M = 10;
 while ((M--) > 0) {
      count++;
  }
   System.out.println(count);
}

Func1 执行的基本操作次数 :

  • F(N)=N^2 + 2*N + 10

所以当N=10,100,1000时

  • N = 10
    F(N) = 130
  • N = 100
    F(N) = 10210
  • N = 1000
    F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

大O符号(Big O notation):
是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。如2×N^2,去掉常数2,结果为O (N^2)


使用大O的渐进表示法以后,Func1的时间复杂度为:O (N^2)

  • N = 10
    F(N) = 100
  • N = 100
    F(N) = 10000
  • N = 1000
    F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

常见计算举例

实例1:

// 计算func2的时间复杂度?
void func2(int N) {
  int count = 0;
  for (int k = 0; k < 2 * N ; k++) {
     count++; 
  }
  int M = 10;
  while ((M--) > 0) {
     count++; 
  }
  System.out.println(count);
}

基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例2:

// 计算func3的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
  count++; }
for (int k = 0; k < N ; k++) {
  count++; }
System.out.println(count);
}

基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

实例3:

// 计算func4的时间复杂度?
void func4(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
  count++; }
System.out.println(count);
}

基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)

实例4:

void bubbleSort(int[] array) {
  for (int end = array.length; end > 0; end--) {
      boolean sorted = true;
      for (int i = 1; i < end; i++) {
          if (array[i - 1] > array[i]) {
           Swap(array, i - 1, i);
              sorted = false;
          }
      }
      if (sorted == true) {
          break;
      }
  }
}

基本操作执行最好N次,最坏执行了(N*(N-1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

实例5:

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
  int begin = 0;
  int end = array.length - 1;
  while (begin <= end) {
     int mid = begin + ((end-begin) / 2);
     if (array[mid] < value)
         begin = mid + 1;
     else if (array[mid] > value)
          end = mid - 1;
     else
         return mid;
  }
 return -1; }

基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)

因为二分查找每次排除掉一半的不适合值,
一次二分剩下:n/2
两次二分剩下:n/2/2 = n/4

实例6:

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N; }

通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

实例7:

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树)

cfdab403c9ba490cb9f21fcdf1927856.png



相关文章
|
7天前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
40 15
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
101 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
88 6
|
14天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
25 6
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
3月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
56 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
3月前
|
机器学习/深度学习 算法 搜索推荐
让星星⭐月亮告诉你,Java冒泡排序及其时间复杂度计算
冒泡排序是一种简单的排序算法,通过多次遍历数组,每次比较相邻元素并交换位置,将较小的元素逐步移至数组前端。第一轮结束后,最小值会位于首位;第二轮则将次小值置于第二位,依此类推。经过 (n-1) 轮遍历后,数组完成排序。冒泡排序的时间复杂度为 O(n²),在最优情况下(已排序数组)时间复杂度为 O(n)。示例代码展示了如何实现冒泡排序。
80 1
|
3月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
164 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
3月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
229 0
算法的时间复杂度和空间复杂度
|
3月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析

热门文章

最新文章