Hadoop : hdfs的核心工作原理

简介: Hadoop : hdfs的核心工作原理

namenode元数据管理要点

 

什么是元数据?

hdfs的目录结构及每一个文件的块信息(块的id,块的副本数量,块的存放位置<datanode>)


元数据由谁负责管理?

namenode


namenode把元数据记录在哪里?

1. namenode的实时的完整的元数据存储在内存中;
2. namenode还会在磁盘中(dfs.namenode.name.dir)存储内存元数据在某个时间点上的镜像文件;
3. namenode会把引起元数据变化的客户端操作记录在edits日志文件中;


Namenode主要维护两个文件,一个是fsimage,一个是editlog。

 

  • fsimage保存了最新的元数据检查点,包含了整个HDFS文件系统的所有目录和文件的信息。对于文件来说包括了数据块描述信息、修改时间、访问时间等;对于目录来说包括修改时间、访问权限控制信息(目录所属用户,所在组)等。
  • editlog主要是在NameNode已经启动情况下对HDFS进行的各种更新操作进行记录,HDFS客户端执行所有的写操作都会被记录到editlog中。
  • 简单来说,NameNode维护了文件与数据块的映射表-以及数据块与数据节点的映射表,什么意思呢?就是一个文件,它切分成了几个数据块,以及这些数据块分别存储在哪些datanode上,namenode一清二楚。
  • Fsimage就是在某一时刻,整个hdfs 的快照,就是这个时刻hdfs上所有的文件块和目录,分别的状态,位于哪些个datanode,各自的权限,各自的副本个数。
  • 然后客户端对hdfs所有的更新操作,比如说移动数据,或者删除数据,都会记录在editlog中。
  • 为了避免editlog不断增大,secondary namenode会周期性合并fsimage和edits成新的fsimage,新的操作记录会写入新的editlog中,这个周期可以自己设置(editlog到达一定大小或者定时)。

 

secondarynamenode

  • secondarynamenode会定期从namenode上下载fsimage镜像和新生成的edits日志,然后加载fsimage镜像到内存中,然后顺序解析edits文件,对内存中的元数据对象进行修改整合完成后,将内存元数据序列化成一个新的fsimage,并将这个fsimage镜像文件上传给namenode

上述过程叫做:checkpoint操作

提示:secondary namenode每次做checkpoint操作时,都需要从namenode上下载上次的fsimage镜像文件吗?

  • 第一次checkpoint需要下载,以后就不用下载了,因为自己的机器上就已经有了。

 

图片.png

 

可以很清晰看出

第一步:将hdfs更新记录写入一个新的文件——edits.new。

第二步:将fsimage和editlog通过http协议发送至secondary namenode。

第三步:将fsimage与editlog合并,生成一个新的文件——fsimage.ckpt。这步之所以要在secondary namenode中进行,是因为比较耗时,如果在namenode中进行,或导致整个系统卡顿。

第四步:将生成的fsimage.ckpt通过http协议发送至namenode。

第五步:重命名fsimage.ckpt为fsimage,edits.new为edits。

 

  • 这样的话,fsimage与editlog合并的过程就完成了。所以如果namenode宕机,其实secondary namenode还保存这一份不久前的fsimage,还能挽回一些损失吧。
  • 另外,一旦有datanode挂掉了(宕机或者是网络阻塞),namenode能很快感知到,并且将宕机的节点上的数据块转移至其余空闲节点。这点是因为hdfs中心跳机制(heartbeat)。
  • 心跳机制默认3s中一次,datanode会向namenode发送一次一跳,告知namenode当前节点上存放的数据文件是什么。如果namenode中记录的是该datanode存放了文件A的两个数据块和文件B的一个数据块,但是心跳中只有文件A的一个数据块信息,namenode就会知道该datanode数据块损坏了,会把损坏的数据块在别的datanode上补充。

 

 

补充:secondary namenode启动位置的配置

<property>
  <name>dfs.namenode.secondary.http-address</name>
  <value>0.0.0.0:50090</value>
</property>
  • 把默认值改成你想要的机器主机名即可

 

secondarynamenode保存元数据文件的目录配置:

<property>
  <name>dfs.namenode.checkpoint.dir</name>
  <value>file://${hadoop.tmp.dir}/dfs/namesecondary</value>
</property>
  • 改成自己想要的路径即可:/root/dfs/namesecondary


目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
131 6
|
1月前
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
59 3
|
1月前
|
分布式计算 负载均衡 算法
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
27 1
|
1月前
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
37 1
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
79 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
35 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
44 0
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
8天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
41 2
|
9天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
39 1

相关实验场景

更多