ClickHouse(22)ClickHouse集成HDFS表引擎详细解析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: ClickHouse的HDFS引擎允许直接在Hadoop生态系统内管理数据。使用`ENGINE=HDFS(URI, format)`,其中URI指定HDFS路径,format定义文件格式(如TSV、CSV或ORC)。表可读写,但不支持`ALTER`、`SELECT...SAMPLE`、索引和复制操作。通配符可用于文件路径,如`*`、`?`和范围`{N..M}`。Kerberos认证可配置。虚拟列包括文件路径 `_path` 和文件名 `_file`。有关更多信息,参见相关文章系列。

HDFS

这个引擎提供了与Apache Hadoop生态系统的集成,允许通过ClickHouse管理HDFS上的数据。这个引擎提供了Hadoop的特定功能。

用法

ENGINE = HDFS(URI, format)

URI 参数是HDFS中整个文件的URI
format 参数指定一种可用的文件格式。执行SELECT查询时,格式必须支持输入,以及执行INSERT查询时,格式必须支持输出.路径部分URI可能包glob通配符。在这种情况下,表将是只读的。

clickhouse支持的format,文件格式:

格式 输入 输出
[TabSeparated]
[TabSeparatedRaw]
[TabSeparatedWithNames]
[TabSeparatedWithNamesAndTypes]
[Template]
[TemplateIgnoreSpaces]
[CSV]
[CSVWithNames]
[CustomSeparated]
[Values]
[Vertical]
[JSON]
[JSONAsString]
[JSONStrings]
[JSONCompact]
[JSONCompactStrings]
[JSONEachRow]
[JSONEachRowWithProgress]
[JSONStringsEachRow]
[JSONStringsEachRowWithProgress]
[JSONCompactEachRow]
[JSONCompactEachRowWithNamesAndTypes]
[JSONCompactStringsEachRow]
[JSONCompactStringsEachRowWithNamesAndTypes]
[TSKV]
[Pretty]
[PrettyCompact]
[PrettyCompactMonoBlock]
[PrettyNoEscapes]
[PrettySpace]
[Protobuf]
[ProtobufSingle]
[Avro]
[AvroConfluent]
[Parquet]
[Arrow]
[ArrowStream]
[ORC]
[RowBinary]
[RowBinaryWithNamesAndTypes]
[Native]
[Null]
[XML]
[CapnProto]
[LineAsString]
[Regexp]
[RawBLOB]

示例:

1. 设置 hdfs_engine_table 表:

CREATE TABLE hdfs_engine_table (name String, value UInt32) ENGINE=HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')

2. 填充文件:

INSERT INTO hdfs_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)

3. 查询数据:

SELECT * FROM hdfs_engine_table LIMIT 2
┌─name─┬─value─┐
│ one  │     1 │
│ two  │     2 │
└──────┴───────┘

实施细节

  • 读取和写入可以并行
  • 不支持:
    • ALTERSELECT...SAMPLE 操作。
    • 索引。
    • 复制。

路径中的通配符

多个路径组件可以具有 globs。 对于正在处理的文件应该存在并匹配到整个路径模式。 文件列表的确定是在 SELECT 的时候进行(而不是在 CREATE 的时候)。

  • * — 替代任何数量的任何字符,除了 / 以及空字符串。
  • ? — 代替任何单个字符.
  • {some_string,another_string,yet_another_one} — 替代任何字符串 'some_string', 'another_string', 'yet_another_one'.
  • {N..M} — 替换 N 到 M 范围内的任何数字,包括两个边界的值.

示例

  1. 假设我们在 HDFS 上有几个 TSV 格式的文件,文件的 URI 如下:
  • ‘hdfs://hdfs1:9000/some_dir/some_file_1’
  • ‘hdfs://hdfs1:9000/some_dir/some_file_2’
  • ‘hdfs://hdfs1:9000/some_dir/some_file_3’
  • ‘hdfs://hdfs1:9000/another_dir/some_file_1’
  • ‘hdfs://hdfs1:9000/another_dir/some_file_2’
  • ‘hdfs://hdfs1:9000/another_dir/some_file_3’
  1. 有几种方法可以创建由所有六个文件组成的表:
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV')

另一种方式:

CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_?', 'TSV')

表由两个目录中的所有文件组成(所有文件都应满足query中描述的格式和模式):

CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV')

注意:

如果文件列表包含带有前导零的数字范围,请单独使用带有大括号的构造或使用 `?`.

示例

创建具有名为文件的表 file000, file001, … , file999:

CREARE TABLE big_table (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV')

配置

与 GraphiteMergeTree 类似,HDFS 引擎支持使用 ClickHouse 配置文件进行扩展配置。有两个配置键可以使用:全局 (hdfs) 和用户级别 (hdfs_*)。首先全局配置生效,然后用户级别配置生效 (如果用户级别配置存在) 。

  <!-- HDFS 引擎类型的全局配置选项 -->
  <hdfs>
    <hadoop_kerberos_keytab>/tmp/keytab/clickhouse.keytab</hadoop_kerberos_keytab>
    <hadoop_kerberos_principal>clickuser@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal>
    <hadoop_security_authentication>kerberos</hadoop_security_authentication>
  </hdfs>

  <!-- 用户 "root" 的指定配置 -->
  <hdfs_root>
    <hadoop_kerberos_principal>root@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal>
  </hdfs_root>

可选配置选项及其默认值的列表

libhdfs3 支持的

| 参数 | 默认值 |
| rpc_client_connect_tcpnodelay | true |
| dfs_client_read_shortcircuit | true |
| output_replace-datanode-on-failure | true |
| input_notretry-another-node | false |
| input_localread_mappedfile | true |
| dfs_client_use_legacy_blockreader_local | false |
| rpc_client_ping_interval | 10 1000 |
| rpc_client_connect_timeout | 600
1000 |
| rpc_client_read_timeout | 3600 1000 |
| rpc_client_write_timeout | 3600
1000 |
| rpc_client_socekt_linger_timeout | -1 |
| rpc_client_connect_retry | 10 |
| rpc_client_timeout | 3600 1000 |
| dfs_default_replica | 3 |
| input_connect_timeout | 600
1000 |
| input_read_timeout | 3600 1000 |
| input_write_timeout | 3600
1000 |
| input_localread_default_buffersize | 1 1024 1024 |
| dfs_prefetchsize | 10 |
| input_read_getblockinfo_retry | 3 |
| input_localread_blockinfo_cachesize | 1000 |
| input_read_max_retry | 60 |
| output_default_chunksize | 512 |
| output_default_packetsize | 64 1024 |
| output_default_write_retry | 10 |
| output_connect_timeout | 600
1000 |
| output_read_timeout | 3600 1000 |
| output_write_timeout | 3600
1000 |
| output_close_timeout | 3600 1000 |
| output_packetpool_size | 1024 |
| output_heeartbeat_interval | 10
1000 |
| dfs_client_failover_max_attempts | 15 |
| dfs_client_read_shortcircuit_streams_cache_size | 256 |
| dfs_client_socketcache_expiryMsec | 3000 |
| dfs_client_socketcache_capacity | 16 |
| dfs_default_blocksize | 64 1024 1024 |
| dfs_default_uri | "hdfs://localhost:9000" |
| hadoop_security_authentication | "simple" |
| hadoop_security_kerberos_ticket_cache_path | "" |
| dfs_client_log_severity | "INFO" |
| dfs_domain_socket_path | "" |

HDFS 配置参考 也许会解释一些参数的含义.

ClickHouse 额外的配置

| 参数 | 默认值 |
|hadoop_kerberos_keytab | "" |
|hadoop_kerberos_principal | "" |
|hadoop_kerberos_kinit_command | kinit |

限制

  • hadoop_security_kerberos_ticket_cache_path 只能在全局配置, 不能指定用户

Kerberos 支持

如果 hadoop_security_authentication 参数的值为 'kerberos' ,ClickHouse 将通过 Kerberos 设施进行认证。
注意,由于 libhdfs3 的限制,只支持老式的方法。数据节点的安全通信无法由SASL保证 ( HADOOP_SECURE_DN_USER 是这种安全方法的一个可靠指标)。

如果指定了hadoop_kerberos_keytab, hadoop_kerberos_principal或者hadoop_kerberos_kinit_command,将会调用kinit工具.在此情况下,hadoop_kerberos_keytab和hadoop_kerberos_principal参数是必须配置的.kinit工具和 krb5 配置文件是必要的.

虚拟列

  • _path — 文件路径.
  • _file — 文件名.

资料分享

ClickHouse经典中文文档分享

clickhouse系列文章

相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
130 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
数据采集 安全 数据管理
深度解析:DataHub的数据集成与管理策略
【10月更文挑战第23天】DataHub 是阿里云推出的一款数据集成与管理平台,旨在帮助企业高效地处理和管理多源异构数据。作为一名已经有一定 DataHub 使用经验的技术人员,我深知其在数据集成与管理方面的强大功能。本文将从个人的角度出发,深入探讨 DataHub 的核心技术、工作原理,以及如何实现多源异构数据的高效集成、数据清洗与转换、数据权限管理和安全控制措施。通过具体的案例分析,展示 DataHub 在解决复杂数据管理问题上的优势。
266 1
|
2月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
58 0
|
2天前
|
消息中间件 关系型数据库 MySQL
ClickHouse如何整合数据源:MySQL、HDFS...
ClickHouse 是一个强大的列式数据库管理系统,支持多种数据源。常见的数据源包括外部数据源(如 HDFS、File、URL、Kafka 和 RabbitMQ)、数据库(如 MySQL 和 PostgreSQL)和流式数据(如 Stream 和 Materialized Views)。本文介绍了如何从 MySQL 和 HDFS 读取数据到 ClickHouse 中,包括创建数据库、映射表和查询数据的具体步骤。通过这些方法,用户可以方便地将不同来源的数据导入 ClickHouse 进行高效存储和分析。
13 3
|
16天前
|
机器学习/深度学习 自然语言处理 监控
智能客服系统集成技术解析和价值点梳理
在 2024 年的智能客服系统领域,合力亿捷等服务商凭借其卓越的技术实力引领潮流,它们均积极应用最新的大模型技术,推动智能客服的进步。
50 7
|
1月前
|
安全 测试技术 数据安全/隐私保护
原生鸿蒙应用市场开发者服务的技术解析:从集成到应用发布的完整体验
原生鸿蒙应用市场开发者服务的技术解析:从集成到应用发布的完整体验
|
4月前
|
持续交付 jenkins Devops
WPF与DevOps的完美邂逅:从Jenkins配置到自动化部署,全流程解析持续集成与持续交付的最佳实践
【8月更文挑战第31天】WPF与DevOps的结合开启了软件生命周期管理的新篇章。通过Jenkins等CI/CD工具,实现从代码提交到自动构建、测试及部署的全流程自动化。本文详细介绍了如何配置Jenkins来管理WPF项目的构建任务,确保每次代码提交都能触发自动化流程,提升开发效率和代码质量。这一方法不仅简化了开发流程,还加强了团队协作,是WPF开发者拥抱DevOps文化的理想指南。
99 1
|
3月前
|
图形学 iOS开发 Android开发
从Unity开发到移动平台制胜攻略:全面解析iOS与Android应用发布流程,助你轻松掌握跨平台发布技巧,打造爆款手游不是梦——性能优化、广告集成与内购设置全包含
【8月更文挑战第31天】本书详细介绍了如何在Unity中设置项目以适应移动设备,涵盖性能优化、集成广告及内购功能等关键步骤。通过具体示例和代码片段,指导读者完成iOS和Android应用的打包与发布,确保应用顺利上线并获得成功。无论是性能调整还是平台特定的操作,本书均提供了全面的解决方案。
160 0
|
4月前
|
持续交付 jenkins C#
“WPF与DevOps深度融合:从Jenkins配置到自动化部署全流程解析,助你实现持续集成与持续交付的无缝衔接”
【8月更文挑战第31天】本文详细介绍如何在Windows Presentation Foundation(WPF)项目中应用DevOps实践,实现自动化部署与持续集成。通过具体代码示例和步骤指导,介绍选择Jenkins作为CI/CD工具,结合Git进行源码管理,配置构建任务、触发器、环境、构建步骤、测试及部署等环节,显著提升开发效率和代码质量。
90 0
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
186 6

推荐镜像

更多
下一篇
DataWorks