AI视频监控普及应用的三大挑战

简介: 视频监控在安全领域已经根深蒂固了几十年,但视频监控具有超越安全的价值这一观点正在被越来越多的业内人士认可和关注。

近年来,安防视频监控无论在软件还是硬件方面都迎来了重大的技术进步,各式各样的智能监控摄像头被投放到市场。

a34fdac6546f89b0d2c284ecb85dd197a67d57.jpg

不过,与任何新事物一样,人工智能视频监控也面临着一些限制其采用和发展的挑战。尽管有一些明显的优势可以将投资回报提高数倍,但一些客户仍然犹豫不决。

一般来说,几乎所有市场层面都需要额外的教育和意识培育,但知识鸿沟并不是唯一的问题。本文将简单分析一下现阶段AI 视频监控行业面临的主要挑战。

AI监控尚处浅层应用
视频监控作为各大机构和场所的核心安防系统之一,伴随着技术的发展和应用,视频监控摄像头不仅仅能够实现基础的安全防范功能,同时也是助力商业智能的重要工具。

Azena 营销副总裁 Fabio Marti 谈到,视频监控摄像头如今正成为越来越重要的物联网传感器设备,在商业智能、城市管理、工业监测等领域发挥着重要的作用,这已被公认为是智能安防行业的显著趋势。不过从普及应用的情况来看,监控摄像头依然主要被视为安全和监视工具,距离被纳入到企业的数字化运营工作中还有一段距离。”

用户培育尚待成熟
智能摄像头和人工智能分析的应用是市场趋势,市场正在接受这些可以处理复杂分析的强大边缘传感器的潜力。

“客户需要了解这些摄像头的真正潜力以及如何从中获得价值。”Marti 补充道。“此外,系统集成商和终端用户依然缺乏较为全面的数据科学专业知识,还无法帮助推动诸如利用智能摄像机系统生成有价值数据或提高运营效率之类的举措。”

根据 Hakimo 创始人兼首席执行官 Sam Joseph 的说法,最大的挑战是终端用户尚未习惯 AI 算法,因此,在某些情况下,他们对算法是否真的能在实践中发挥作用犹豫不决。

“不过越来越多的终端用户开始尝试采用人工智能解决方案,且随着时间的推移,他们也对这些算法越来越充满信心,因为他们能很清楚的感受到AI算法相较于传统方式带来的能效提升。”Joseph 补充道。

使用AI监控具有一定门槛
人工智能视频监控摄像头和智能训练一样好。Vicentive Systems的集成产品经理Dan Berg指出,限制人工智能在视频监控中应用的一个主要挑战是配置和微调分析所需的时间和成本。

“要想取得成功,集成组织需要找到合适的客户——一个在运营中理解人工智能需求并每天参与该技术的客户,”Berg表示。“成功部署人工智能分析系统需要集成商和终端用户有明确的目标和成功指标,以及耐心。”

结论
人工智能在视频监控中的应用将继续存在。在未来几年里,我们肯定会看到更多的技术进步,使安全摄像头更加智能。

但它们的采用速度可能没有业界希望的那么快。目前,安全行业变化缓慢,需要很长时间才能接受新技术,同时,安全设备的安全性考虑也是一个同样重要的问题。

为了让人工智能监控系统实现更多的市场渗透,有必要让用户端更多地了解AI监控系统的诸多应用优势,而这则有赖于解决方案提供商和集成商的积极宣扬推广。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
15天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
177 27
|
8天前
|
存储 人工智能 程序员
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
138 9
|
14天前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
82 14
|
15天前
|
机器学习/深度学习 人工智能 监控
AI视频监控在大型商场的智能技术方案
该方案通过目标检测与姿态识别技术(如YOLO、OpenPose),实时监控顾客行为,识别异常动作如夹带物品、藏匿商品等,并结合AI模型分析行为模式,防止偷窃。出口处设置结算验证系统,比对结算记录与视频信息,确保商品全部支付。多角度摄像头和数据交叉验证减少误报,注重隐私保护,提升安保效率,降低损失率,增强顾客信任。
53 15
|
6天前
|
人工智能 BI
【瓴羊数据荟】 AI x Data :大模型时代的数据治理与BI应用创新 | 瓴羊数据Meet Up第4期上海站
瓴羊「数据荟」Meet Up城市行系列活动第四期活动将于3月7日在上海举办,由中国信息通信研究院与阿里巴巴瓴羊专家联袂呈现,共同探讨AI时代的数据应用实践与企业智能DNA的革命性重构。
【瓴羊数据荟】  AI  x Data :大模型时代的数据治理与BI应用创新 | 瓴羊数据Meet Up第4期上海站
|
8天前
|
数据采集 人工智能 安全
阿里云携手DeepSeek,AI应用落地五折起!
近年来,人工智能技术飞速发展,越来越多的企业希望借助AI的力量实现数字化转型,提升效率和竞争力。然而,AI应用的开发和落地并非易事,企业往往面临着技术门槛高、成本投入大、落地效果难以保障等挑战。
58 1
|
9天前
|
人工智能 边缘计算 监控
AI视频监控在大型商场的技术方案
该系统通过人脸分析模块利用FaceNet等模型提取顾客的性别、年龄和表情特征,快速生成群体画像。隐私保护模块采用匿名化技术和实时模糊处理,确保数据安全,并通过边缘计算减少隐私泄露风险。数据可视化与报告功能自动生成统计报告,支持服务优化和营销决策。核心技术包括高精度的人脸分析模型、全面的隐私保护措施及直观的数据可视化工具。
AI视频监控在大型商场的技术方案
|
15天前
|
人工智能 自然语言处理 搜索推荐
现在最火的AI是怎么应用到体育行业的
AI在体育行业的应用日益广泛,涵盖数据分析、伤病预防、观众体验、裁判辅助等多个领域。通过传感器和可穿戴设备,AI分析运动员表现,提供个性化训练建议;预测伤病风险,制定康复方案;优化比赛预测和博彩指数;提升观众的个性化内容推荐和沉浸式观赛体验;辅助裁判判罚,提高准确性;发掘青训人才,优化训练计划;智能管理场馆运营和票务;自动生成媒体内容,提供实时翻译;支持电竞分析和虚拟体育赛事;并为运动员提供个性化营养和健康管理方案。未来,随着技术进步,AI的应用将更加深入和多样化。
|
6天前
|
传感器 人工智能 文字识别
智能化车辆信息管理:AI视频监控在大型商场的技术方案介绍
通过高效停车管理系统实现精准采集车牌号码和停车时长、关联消费数据、优化停车引导。解决方案包括智能车牌识别、实时车位引导及个性化服务,利用OCR、AI图像增强、传感器等技术,确保准确识别、减少寻找车位时间,并提供定制化优惠,提升购物体验。
|
数据采集 监控 网络协议
linux系统中利用QT实现视频监控的基本方法
linux系统中利用QT实现视频监控的基本方法
435 0

热门文章

最新文章