AI视频监控普及应用的三大挑战

简介: 视频监控在安全领域已经根深蒂固了几十年,但视频监控具有超越安全的价值这一观点正在被越来越多的业内人士认可和关注。

近年来,安防视频监控无论在软件还是硬件方面都迎来了重大的技术进步,各式各样的智能监控摄像头被投放到市场。

a34fdac6546f89b0d2c284ecb85dd197a67d57.jpg

不过,与任何新事物一样,人工智能视频监控也面临着一些限制其采用和发展的挑战。尽管有一些明显的优势可以将投资回报提高数倍,但一些客户仍然犹豫不决。

一般来说,几乎所有市场层面都需要额外的教育和意识培育,但知识鸿沟并不是唯一的问题。本文将简单分析一下现阶段AI 视频监控行业面临的主要挑战。

AI监控尚处浅层应用
视频监控作为各大机构和场所的核心安防系统之一,伴随着技术的发展和应用,视频监控摄像头不仅仅能够实现基础的安全防范功能,同时也是助力商业智能的重要工具。

Azena 营销副总裁 Fabio Marti 谈到,视频监控摄像头如今正成为越来越重要的物联网传感器设备,在商业智能、城市管理、工业监测等领域发挥着重要的作用,这已被公认为是智能安防行业的显著趋势。不过从普及应用的情况来看,监控摄像头依然主要被视为安全和监视工具,距离被纳入到企业的数字化运营工作中还有一段距离。”

用户培育尚待成熟
智能摄像头和人工智能分析的应用是市场趋势,市场正在接受这些可以处理复杂分析的强大边缘传感器的潜力。

“客户需要了解这些摄像头的真正潜力以及如何从中获得价值。”Marti 补充道。“此外,系统集成商和终端用户依然缺乏较为全面的数据科学专业知识,还无法帮助推动诸如利用智能摄像机系统生成有价值数据或提高运营效率之类的举措。”

根据 Hakimo 创始人兼首席执行官 Sam Joseph 的说法,最大的挑战是终端用户尚未习惯 AI 算法,因此,在某些情况下,他们对算法是否真的能在实践中发挥作用犹豫不决。

“不过越来越多的终端用户开始尝试采用人工智能解决方案,且随着时间的推移,他们也对这些算法越来越充满信心,因为他们能很清楚的感受到AI算法相较于传统方式带来的能效提升。”Joseph 补充道。

使用AI监控具有一定门槛
人工智能视频监控摄像头和智能训练一样好。Vicentive Systems的集成产品经理Dan Berg指出,限制人工智能在视频监控中应用的一个主要挑战是配置和微调分析所需的时间和成本。

“要想取得成功,集成组织需要找到合适的客户——一个在运营中理解人工智能需求并每天参与该技术的客户,”Berg表示。“成功部署人工智能分析系统需要集成商和终端用户有明确的目标和成功指标,以及耐心。”

结论
人工智能在视频监控中的应用将继续存在。在未来几年里,我们肯定会看到更多的技术进步,使安全摄像头更加智能。

但它们的采用速度可能没有业界希望的那么快。目前,安全行业变化缓慢,需要很长时间才能接受新技术,同时,安全设备的安全性考虑也是一个同样重要的问题。

为了让人工智能监控系统实现更多的市场渗透,有必要让用户端更多地了解AI监控系统的诸多应用优势,而这则有赖于解决方案提供商和集成商的积极宣扬推广。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
5天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
59 17
|
1天前
|
弹性计算 人工智能 自然语言处理
云工开物:阿里云弹性计算走进高校第2期,与北京大学研一学生共探AI时代下的应用创新
阿里云高校合作、弹性计算团队​于北京大学,开展了第2届​【弹性计算进校园】​交流活动。
|
7天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
49 12
|
5天前
|
人工智能 容灾 关系型数据库
【AI应用启航workshop】构建高可用数据库、拥抱AI智能问数
12月25日(周三)14:00-16:30参与线上闭门会,阿里云诚邀您一同开启AI应用实践之旅!
|
3天前
|
人工智能 前端开发 Java
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
128 0
|
4天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。
|
机器学习/深度学习 人工智能 算法
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
73 10
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用