《循序渐进学Spark》一第1章

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来自华章出版社《循序渐进学Spark》一书中的第1章,第1.1节,作者   小象学院 杨 磊 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 


第1章

Spark架构与集群环境

本章首先介绍Spark大数据处理框架的基本概念,然后介绍Spark生态系统的主要组成部分,包括Spark SQL、Spark Streaming、MLlib和GraphX,接着简要描述了Spark的架构,便于读者认识和把握,最后描述了Spark集群环境搭建及Spark开发环境的构建方法。

1.1 Spark概述与架构

随着互联网规模的爆发式增长,不断增加的数据量要求应用程序能够延伸到更大的集群中去计算。与单台机器计算不同,集群计算引发了几个关键问题,如集群计算资源的共享、单点宕机、节点执行缓慢及程序的并行化。针对这几个集群环境的问题,许多大数据处理框架应运而生。比如Google的MapReduce,它提出了简单、通用并具有自动容错功能的批处理计算模型。但是MapReduce对于某些类型的计算并不适合,比如交互式和流式计算。基于这种类型需求的不一致性,大量不同于MapReduce的专门数据处理模型诞生了,如GraphLab、Impala、Storm等。大量数据模型的产生,引发的后果是对于大数据处理而言,针对不同类型的计算,通常需要一系列不同的处理框架才能完成。这些不同的处理框架由于天生的差异又带来了一系列问题:重复计算、使用范围的局限性、资源分配、统一管理,等等。

1.1.1 Spark概述

为了解决上述MapReduce及各种处理框架所带来的问题,加州大学伯克利分校推出了Spark统一大数据处理框架。Spark是一种与Hadoop MapReduce类似的开源集群大数据计算分析框架。Spark基于内存计算,整合了内存计算的单元,所以相对于hadoop的集群处理方法,Spark在性能方面更具优势。Spark启用了弹性内存分布式数据集,除了能够提供交互式查询外,还可以优化迭代工作负载。

从另一角度来看,Spark可以看作MapReduce的一种扩展。MapReduce之所以不擅长迭代式、交互式和流式的计算工作,主要因为它缺乏在计算的各个阶段进行有效的资源共享,针对这一点, Spark创造性地引入了RDD(弹性分布式数据集)来解决这个问题。RDD的重要特性之一就是资源共享。

Spark基于内存计算,提高了大数据处理的实时性,同时兼具高容错性和可伸缩性,更重要的是,Spark可以部署在大量廉价的硬件之上,形成集群。

提到Spark的优势就不得不提到大家熟知的Hadoop。事实上,Hadoop主要解决了两件事情:

1)数据的可靠存储。

2)数据的分析处理。

相应地,Hadoop也主要包括两个核心部分:

1)分布式文件系统(Hadoop Distributed File System,HDFS):在集群上提供高可靠的文件存储,通过将文件块保存多个副本的办法解决服务器或硬盘故障的问题。

2)计算框架MapReduce:通过简单的Mapper和Reducer的抽象提供一个编程模型,可以在一个由几十台,甚至上百台机器组成的不可靠集群上并发地、分布式地处理大量的数据集,而把并发、分布式(如机器间通信)和故障恢复等计算细节隐藏起来。

Spark是MapReduce的一种更优的替代方案,可以兼容HDFS等分布式存储层,也可以兼容现有的Hadoop生态系统,同时弥补MapReduce的不足。

与Hadoop MapReduce相比,Spark的优势如下:

中间结果:基于MapReduce的计算引擎通常将中间结果输出到磁盘上,以达到存储和容错的目的。由于任务管道承接的缘故,一切查询操作都会产生很多串联的Stage,这些Stage输出的中间结果存储于HDFS。而Spark将执行操作抽象为通用的有向无环图(DAG),可以将多个Stage的任务串联或者并行执行,而无须将Stage中间结果输出到HDFS中。

执行策略:MapReduce在数据Shuffle之前,需要花费大量时间来排序,而Spark不需要对所有情景都进行排序。由于采用了DAG的执行计划,每一次输出的中间结果都可以缓存在内存中。

任务调度的开销:MapReduce系统是为了处理长达数小时的批量作业而设计的,在某些极端情况下,提交任务的延迟非常高。而Spark采用了事件驱动的类库AKKA来启动任务,通过线程池复用线程来避免线程启动及切换产生的开销。

更好的容错性:RDD之间维护了血缘关系(lineage),一旦某个RDD失败了,就能通过父RDD自动重建,保证了容错性。

高速:基于内存的Spark计算速度大约是基于磁盘的Hadoop MapReduce的100倍。

易用:相同的应用程序代码量一般比Hadoop MapReduce少50%~80%。

提供了丰富的API:与此同时,Spark支持多语言编程,如Scala、Python及Java,便于开发者在自己熟悉的环境下工作。Spark自带了80多个算子,同时允许在Spark Shell环境下进行交互式计算,开发者可以像书写单机程序一样开发分布式程序,轻松利用Spark搭建大数据内存计算平台,并利用内存计算特性,实时处理海量数据。

1.1.2 Spark生态

Spark大数据计算平台包含许多子模块,构成了整个Spark的生态系统,其中Spark为核心。

伯克利将整个Spark的生态系统称为伯克利数据分析栈(BDAS),其结构如图1-1所示。

以下简要介绍BDAS的各个组成部分。

1. Spark Core

Spark Core是整个BDAS的核心组件,是一种大数据分布式处理框架,不仅实现了MapReduce的算子map函数和reduce函数及计算模型,还提供如filter、join、groupByKey等更丰富的算子。Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。其底层采用Scala函数式语言书写而成,并且深度借鉴Scala函数式的编程思想,提供与Scala类似的编程接口。

97df0ff16c403621424cd5d5bab55addfff29be1

2. Mesos

Mesos是Apache下的开源分布式资源管理框架,被称为分布式系统的内核,提供了类似YARN的功能,实现了高效的资源任务调度。

3. Spark Streaming

Spark Streaming是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。其吞吐量能够超越现有主流流处理框架Storm,并提供丰富的API用于流数据计算。

4. MLlib

MLlib 是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。MLlib 目前支持4种常见的机器学习问题:二元分类、回归、聚类以及协同过滤,还包括一个底层的梯度下降优化基础算法。

5. GraphX

GraphX是 Spark中用于图和图并行计算的API,可以认为是GraphLab和Pregel在Spark (Scala)上的重写及优化,与其他分布式图计算框架相比,GraphX最大的贡献是,在Spark上提供一栈式数据解决方案,可以方便、高效地完成图计算的一整套流水作业。

6. Spark SQL

Shark是构建在Spark和Hive基础之上的数据仓库。它提供了能够查询Hive中所存储数据的一套SQL接口,兼容现有的Hive QL语法。熟悉Hive QL或者SQL的用户可以基于Shark进行快速的Ad-Hoc、Reporting等类型的SQL查询。由于其底层计算采用了Spark,性能比Mapreduce的Hive普遍快2倍以上,当数据全部存储在内存时,要快10倍以上。2014年7月1日,Spark社区推出了Spark SQL,重新实现了SQL解析等原来Hive完成的工作,Spark SQL在功能上全覆盖了原有的Shark,且具备更优秀的性能。

7. Alluxio

Alluxio(原名Tachyon)是一个分布式内存文件系统,可以理解为内存中的HDFS。为了提供更高的性能,将数据存储剥离Java Heap。用户可以基于Alluxio实现RDD或者文件的跨应用共享,并提供高容错机制,保证数据的可靠性。

8. BlinkDB

BlinkDB是一个用于在海量数据上进行交互式SQL的近似查询引擎。它允许用户在查询准确性和查询响应时间之间做出权衡,执行相似查询。

1.1.3 Spark架构

传统的单机系统,虽然可以多核共享内存、磁盘等资源,但是当计算与存储能力无法满足大规模数据处理的需要时,面对自身CPU与存储无法扩展的先天限制,单机系统就力不从心了。

1. 分布式系统的架构

所谓的分布式系统,即为在网络互连的多个计算单元执行任务的软硬件系统,一般包括分布式操作系统、分布式数据库系统、分布式应用程序等。本书介绍的Spark分布式计算框架,可以看作分布式软件系统的组成部分,基于Spark,开发者可以编写分布式计算程序。

直观来看,大规模分布式系统由许多计算单元构成,每个计算单元之间松耦合。同时,每个计算单元都包含自己的CPU、内存、总线及硬盘等私有计算资源。这种分布式结构的最大特点在于不共享资源,与此同时,计算节点可以无限制扩展,计算能力和存储能力也因而得到巨大增长。但是由于分布式架构在资源共享方面的先天缺陷,开发者在书写和优化程序时应引起注意。分布式系统架构如图1-2所示。

913b096f581ff7e6f387ed27a924a8fe68fb61db

为了减少网络I/O开销,分布式计算的一个核心原则是数据应该尽量做到本地计算。在计算过程中,每个计算单元之间需要传输信息,因此在信息传输较少时,分布式系统可以利用资源无限扩展的优势达到高效率,这也是分布式系统的优势。目前分布式系统在数据挖掘和决策支持等方面有着广泛的应用。

Spark正是基于这种分布式并行架构而产生,也可以利用分布式架构的优势,根据需要,对计算能力和存储能力进行扩展,以应对处理海量数据带来的挑战。同时,Spark的快速及容错等特性,让数据处理分析显得游刃有余。

2. Spark架构

Spark架构采用了分布式计算中的Master-Slave模型。集群中运行Master进程的节点称为Master,同样,集群中含有Worker进程的节点为Slave。Master负责控制整个集群的运行;Worker节点相当于分布式系统中的计算节点,它接收Master节点指令并返回计算进程到Master;Executor负责任务的执行;Client是用户提交应用的客户端;Driver负责协调提交后的分布式应用。具体架构如图1-3所示。


917f7b83e8b160966769af72b597d0eb6c982960

在Spark应用的执行过程中,Driver和Worker是相互对应的。Driver是应用逻辑执行的起点,负责Task任务的分发和调度;Worker负责管理计算节点并创建Executor来并行处理Task任务。Task执行过程中所需的文件和包由Driver序列化后传输给对应的Worker节点,Executor对相应分区的任务进行处理。

下面介绍Spark架构中的组件。

1)Client: 提交应用的客户端。

2)Driver: 执行Application中的main函数并创建SparkContext。

3) ClusterManager: 在YARN模式中为资源管理器。在Standalone模式中为Master(主节点),控制整个集群。

4) Worker: 从节点,负责控制计算节点。启动Executor或Driver,在YARN模式中为NodeManager。

5) Executor: 在计算节点上执行任务的组件。

6) SparkContext: 应用的上下文,控制应用的生命周期。

7) RDD: 弹性分布式数据集,Spark的基本计算单元,一组RDD可形成有向无环图。

8) DAG Scheduler: 根据应用构建基于Stage的DAG,并将Stage提交给Task Scheduler。

9) Task Scheduler: 将Task分发给Executor执行。

10) SparkEnv: 线程级别的上下文,存储运行时重要组件的应用,具体如下:

①SparkConf: 存储配置信息。

②BroadcastManager: 负责广播变量的控制及元信息的存储。

③BlockManager: 负责Block的管理、创建和查找。

④MetricsSystem: 监控运行时的性能指标。

⑤MapOutputTracker: 负责shuffle元信息的存储。

Spark架构揭示了Spark的具体流程如下:

1) 用户在Client提交了应用。

2) Master找到Worker,并启动Driver。

3) Driver向资源管理器(YARN模式)或者Master(Standalone模式)申请资源,并将应用转化为RDD Graph。

4) DAG Scheduler将RDD Graph转化为Stage的有向无环图提交给Task Scheduler。

5) Task Scheduler提交任务给Executor执行。

3. Spark运行逻辑

下面举例说明Spark的运行逻辑,如图1-4所示,在Action算子被触发之后,所有累积的算子会形成一个有向无环图DAG。Spark会根据RDD之间不同的依赖关系形成Stage,每个Stage都包含一系列函数执行流水线。图1-4中A、B、C、D、E、F为不同的RDD,RDD内的方框为RDD的分区。

 ae5dc275db127618e40531dcd0a2e3291fbc674a

图1-4 Spark执行RDD Graph


1)数据从HDFS输入Spark。

2)RDD A、RDD C 经过flatMap与Map操作后,分别转换为RDD B 和 RDD D。

3)RDD D经过reduceByKey操作转换为RDD E。

4)RDD B 与 RDD E 进行join操作转换为RDD F。

5)RDD F 通过函数saveAsSequenceFile输出保存到HDFS中。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
存储 分布式计算 大数据
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
79 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
54 0