【大数据架构】Apache Flink和Apache Spark—比较指南

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据架构】Apache Flink和Apache Spark—比较指南

1. 目标

在本教程中,我们将讨论Apache Spark和Apache Flink之间的比较。Apache spark和Apache Flink都是用于大规模批处理和流处理的开源平台,为分布式计算提供容错和数据分布。本指南提供了Apache Flink和Apache Spark这两种蓬勃发展的大数据技术在特性方面的明智比较。


2. Apache Flink vs Apache Spark


特性 Apache Flink Apache Spark

计算

模型

Flink基于基于操作器的计算模型。 Spark是基于微批处理模式的。

流处

理引擎

Apache Flink为所有工作负载使用流:流、SQL、微批处理和批处理。批处理是流数据的有限集。 Apache Spark对所有工作负载使用微批。但对于需要处理大量实时数据流并实时提供结果的用例来说,这是不够的。

迭代

处理

Flink API提供了两个专用的迭代操作Iterate和Delta Iterate。 Spark基于非本地迭代,在系统外部实现为规则的for - loop。
优化 Apache Flink附带了一个独立于实际编程接口的优化器。 在Apache中,Spark作业必须手动优化。
延迟 通过最小的配置努力,Apache Flink的数据流运行时实现了低延迟和高吞吐量。 与Apache Flink相比,Apache Spark具有较高的延迟。
性能 与其他数据处理系统相比,Apache Flink的总体性能非常出色。Apache Flink使用本地闭环迭代操作符,这使得机器学习和图形处理更快。 尽管Apache Spark拥有优秀的社区背景,现在它被认为是最成熟的社区。但是它的流处理效率并不比Apache Flink高,因为它使用微批处理。
容错 Apache Flink遵循的容错机制是基于Chandy-Lamport分布式快照的。该机制是轻量级的,从而在保持高吞吐率的同时提供了强大的一致性保证。 Spark 流恢复丢失的工作,并提供精确的一次性语义开箱即用,没有额外的代码或配置。(请参阅火花容错特征指南)
去重 Apache Flink一次处理每条记录,因此消除了重复。 Spark还精确地处理每条记录一次,因此消除了重复。

窗口

条件

Flink具有基于记录或任何自定义用户定义的窗口条件。 Spark有一个基于时间的窗口条件

内存

管理

Flink提供自动内存管理。 Spark提供可配置的内存管理。Spark 1.6, Spark也已经转向自动化内存管理。
速度 Flink以闪电般的速度处理数据 Spark的处理模型比Flink慢


3.结论

Apache Spark和Flink都是吸引业界关注的下一代大数据工具。两者都提供与Hadoop和NoSQL数据库的本地连接,并且可以处理HDFS数据。两者都是几个大数据问题的好解决方案。但由于其底层架构,Flink比Spark更快。Apache Spark是Apache存储库中最活跃的组件。Spark拥有非常强大的社区支持和大量的贡献者。Spark已经部署在生产环境中。但就流功能而言,Flink要比Spark好得多(因为Spark以微批的形式处理流),并且对流有本地支持。Spark被认为是大数据的3G,而Flink被认为是大数据的4G。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
104 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
742 13
Apache Flink 2.0-preview released
|
26天前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
82 3
zdl
|
22天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
137 56
|
27天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
107 3
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
55 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
94 2
|
1月前
|
分布式计算 大数据 Apache
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
93 3
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
65 1

推荐镜像

更多