《循序渐进学Spark》一第2章

简介:
 本节书摘来自华章出版社《循序渐进学Spark》一书中的第2章,第2.1节,作者 小象学院 杨 磊,更多章节内容可以访问云栖社区“华章计算机”公众号查看。


第2章

Spark 编程模型

与Hadoop相比,Spark最初为提升性能而诞生。Spark是Hadoop MapReduce的演化和改进,并兼容了一些数据库的基本思想,可以说,Spark一开始就站在Hadoop与数据库这两个巨人的肩膀上。同时,Spark依靠Scala强大的函数式编程Actor通信模式、闭包、容器、泛型,并借助统一资源调度框架,成为一个简洁、高效、强大的分布式大数据处理框架。

Spark在运算期间,将输入数据与中间计算结果保存在内存中,直接在内存中计算。另外,用户也可以将重复利用的数据缓存在内存中,缩短数据读写时间,以提高下次计算的效率。显而易见,Spark基于内存计算的特性使其擅长于迭代式与交互式任务,但也不难发现,Spark需要大量内存来完成计算任务。集群规模与Spark性能之间呈正比关系,随着集群中机器数量的增长,Spark的性能也呈线性增长。接下来介绍Spark编程模型。

2.1 RDD弹性分布式数据集

通常来讲,数据处理有几种常见模型:Iterative Algorithms、Relational Queries、Map-

Reduce、Stream Processing。例如,Hadoop MapReduce采用了MapReduce模型,Storm则采用了Stream Processing模型。

与许多其他大数据处理平台不同,Spark建立在统一抽象的RDD之上,而RDD混合了上述这4种模型,使得Spark能以基本一致的方式应对不同的大数据处理场景,包括MapReduce、Streaming、SQL、Machine Learning以及Graph等。这契合了Matei Zaharia提出的原则:“设计一个通用的编程抽象(Unified Programming Abstraction)”,这也正是Spark的魅力所在,因此要理解Spark,先要理解RDD的概念。

2.1.1 RDD简介

RDD(Resilient Distributed Datasets,弹性分布式数据集)是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘或内存中,并控制数据的分区。RDD还提供了一组丰富的操作来操作这些数据,诸如map、flatMap、filter等转换操作实现了monad模式,很好地契合了Scala的集合操作。除此之外,RDD还提供诸如join、groupBy、reduceByKey等更为方便的操作,以支持常见的数据运算。

RDD是Spark的核心数据结构,通过RDD的依赖关系形成Spark的调度顺序。所谓Spark应用程序,本质是一组对RDD的操作。

下面介绍RDD的创建方式及操作算子类型。

RDD的两种创建方式

从文件系统输入(如HDFS)创建

从已存在的RDD转换得到新的RDD

RDD的两种操作算子

Transformation(变换)

Transformation类型的算子不是立刻执行,而是延迟执行。也就是说从一个RDD变换为另一个RDD的操作需要等到Action操作触发时,才会真正执行。

Action(行动)

Action类型的算子会触发Spark提交作业,并将数据输出到Spark系统。

2.1.2 深入理解RDD

RDD从直观上可以看作一个数组,本质上是逻辑分区记录的集合。在集群中,一个RDD可以包含多个分布在不同节点上的分区,每个分区是一个dataset片段,如图2-1所示。

db3d6dc412dfc037e001eac1ee6aab7d05317514

在图2-1中,RDD-1含有三个分区(p1、p2和p3),分布存储在两个节点上:node1与node2。RDD-2只有一个分区P4,存储在node3节点上。RDD-3含有两个分区P5和P6,存储在node4节点上。

1.  RDD依赖

RDD可以相互依赖,如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为窄依赖(narrow dependency);若多个Child RDD分区都可以依赖,则称之为宽依赖(wide dependency)。不同的操作依据其特性,可能会产生不同的依赖。例如,map操作会产生窄依赖,join操作则产生宽依赖,如图2-2所示。

92cb72d2234403f8a88981326cd4e9a412e86be9

2. RDD支持容错性

支持容错通常采用两种方式:日志记录或者数据复制。对于以数据为中心的系统而言,这两种方式都非常昂贵,因为它需要跨集群网络拷贝大量数据。

RDD天生是支持容错的。首先,它自身是一个不变的(immutable)数据集,其次,RDD之间通过lineage产生依赖关系(在下章继续探讨这个话题),因此RDD能够记住构建它的操作图,当执行任务的Worker失败时,完全可以通过操作图获得之前执行的操作,重新计算。因此无须采用replication方式支持容错,很好地降低了跨网络的数据传输成本。

3. RDD的高效性

RDD提供了两方面的特性:persistence(持久化)和partitioning(分区),用户可以通过persist与partitionBy函数来控制这两个特性。RDD的分区特性与并行计算能力(RDD定义了parallerize函数),使得Spark可以更好地利用可伸缩的硬件资源。如果将分区与持久化二者结合起来,就能更加高效地处理海量数据。

另外,RDD本质上是一个内存数据集,在访问RDD时,指针只会指向与操作相关的部分。例如,存在一个面向列的数据结构,其中一个实现为Int型数组,另一个实现为Float型数组。如果只需要访问Int字段,RDD的指针可以只访问Int数组,避免扫描整个数据结构。

再者,如前文所述,RDD将操作分为两类:Transformation与Action。无论执行了多少次Transformation操作,RDD都不会真正执行运算,只有当Action操作被执行时,运算才会触发。而在RDD的内部实现机制中,底层接口则是基于迭代器的,从而使得数据访问变得更高效,也避免了大量中间结果对内存的消耗。

在实现时,RDD针对Transformation操作,提供了对应的继承自RDD的类型,例如,map操作会返回MappedRDD,flatMap则返回FlatMappedRDD。执行map或flatMap操作时,不过是将当前RDD对象传递给对应的RDD对象而已。

2.1.3 RDD特性总结

RDD是Spark的核心,也是整个Spark的架构基础。它的特性可以总结如下:

1) RDD是不变的(immutable)数据结构存储。

2) RDD将数据存储在内存中,从而提供了低延迟性。

3) RDD是支持跨集群的分布式数据结构。

4) RDD可以根据记录的Key对结构分区。

5) RDD提供了粗粒度的操作,并且都支持分区。


相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
79 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
54 0