TensorFlow笔记--Deep Dream模型(下)

简介: TensorFlow笔记--Deep Dream模型

下面编写主内容

if __name__ == '__main__':
    name = 'mixed4d_3x3_bottleneck_pre_relu'
    channel = 139
    img_noise = np.random.uniform(size=(224, 224, 3)) + 100.0
    layer_output = graph.get_tensor_by_name("import/%s:0" % name)
    render_multiscale(layer_output[:, :, :, channel], img_noise, iter_n=20)

运行代码后,将生成一张大尺寸的图片,如下图:

image.png

从图中可以看出,mixed4d_3x3_bottleneck_pre_relu 卷积层的第139个通道实际上就是学到了某种花朵的特征。


4.生成高质量图片

前面两节生成的图片都是分辨率不高的图片,这节将生成高质量的图片。在图像处理算法中,有 高频成分 和 低频成分 之分。所谓高频成分,是指图像中灰度、颜色、明度变化比较剧烈的地方,比如边缘、细节部分。低频成分是指图像变化不大的地方,比如大块色块、整体风格。

上节生成的图片高频成分太多,图片不够柔和。如何解决这个问题呢?一种方法是针对高频成分加入损失,这样图像在生成的时候就会因为新加入损失的作用二发生变化,但是加入损失会导致计算量和收敛步数增大。另一种方法是 放大低频梯度 ,对梯度进行分解,降至分为 高频梯度 和 低频梯度 ,在人为的去放大低频梯度,就可以得到较为柔和的图像。

一般情况下,要使用 拉普拉斯金字塔 对图像进行分解,这种算法可以把图片分解为多层。同时,也可以对梯队进行分解,分解之后,对高频的梯度和低频的梯度都做标准化,可以让梯度的低频成分和高频成分差不多,表现在图像上就会增加图像的低频成分,从而提高生成图像的质量。这种方法称为 拉普拉斯金字塔标准化,具体实现代码如下:

k = np.float32([1, 4, 6, 4, 1])
k = np.outer(k, k)
k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32)
# 这个函数将图像分为低频和高频成分
def lap_split(img):
    with tf.name_scope('split'):
        # 做一次卷积相当于一次平滑,因此lo为低频成分
        lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME')
        # 低频成分缩放到原始图像大叫就得到lo2,再用原始图像img减去lo2,就得到高频成分hi
        lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1])
        hi = img - lo2
    return lo, hi
# 这个函数将图像img分成n层拉普拉斯金字塔
def lap_split_n(img, n):
    levels = []
    for i in range(n):
        # 调用lap_split将图像分为低频和高频部分
        # 高频部分保存到levels中
        # 低频部分再继续分解
        img, hi = lap_split(img)
        levels.append(hi)
    levels.append(img)
    return levels[::-1]
# 将拉普拉斯金字塔还原到原始图像
def lap_merge(levels):
    img = levels[0]
    for hi in levels[1:]:
        with tf.name_scope('merge'):
            img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi
    return img
# 对img做标准化
def normalize_std(img, eps=1e-10):
    with tf.name_scope('normalize'):
        std = tf.sqrt(tf.reduce_mean(tf.square(img)))
        return img / tf.maximum(std, eps)
# 拉普拉斯金字塔标准化
def lap_normalize(img, scale_n=4):
    img = tf.expand_dims(img, 0)
    tlevels = lap_split_n(img, scale_n)
    # 每一层都做一个normalize_std
    tlevels = list(map(normalize_std, tlevels))
    out = lap_merge(tlevels)
    return out[0, :, :, :]

编写完拉普拉斯标准化函数后,现在编写生成图像的代码:

# 将一个Tensor函数转换成numpy.ndarray 函数
def tffunc(*argtypes):
    placeholders = list(map(tf.placeholder, argtypes))
    def wrap(f):
        out = f(*placeholders)
        def wrapper(*args, **kw):
            return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
        return wrapper
    return wrap
def render_lapnorm(t_obj, img0,
                   iter_n=10, step=1.0, octave_n=3, octave_scale=1.4, lap_n=4):
    # 同样定义目标和梯度
    t_score = tf.reduce_mean(t_obj)
    t_grad = tf.gradients(t_score, t_input)[0]
    # 将lap_normalize转换为正常函数
    lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n))
    img = img0.copy()
    for octave in range(octave_n):
        if octave > 0:
            img = resize_ratio(img, octave_scale)
        for i in range(iter_n):
            g = calc_grad_tiled(img, t_grad)
            # 唯一的区别在于我们使用lap_norm_func来标准化g!
            g = lap_norm_func(g)
            img += g * step
            print('.', end=' ')
    savearray(img, 'lapnorm.jpg')
if __name__ == '__main__':
    name = 'mixed4d_3x3_bottleneck_pre_relu'
    channel = 139
    img_noise = np.random.uniform(size=(224, 224, 3)) + 100.0
    layer_output = graph.get_tensor_by_name('import/%s:0' % name)
    render_lapnorm(layer_output[:, :, :, channel], img_noise, iter_n=20)

运行上面代码后,将生成高质量的图片:

image.png

5. 生成最终的图片
前面已经讲解了如何通过极大化卷积层摸个通道的平均值生成图片,并学习了如何生成更大和质量更高的图像。但是最终的Deep Dream 模型还需要对图片添加一个背景。具体代码如下:

def resize(img, hw):
    min = img.min()
    max = img.max()
    img = (img - min) / (max - min) * 255
    img = np.float32(scipy.misc.imresize(img, hw))
    img = img / 255 * (max - min) + min
    return img
def render_deepdream(t_obj, img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
    t_score = tf.reduce_mean(t_obj)
    t_grad = tf.gradients(t_score, t_input)[0]
    img = img0
    # 同样将图像进行金字塔分解
    # 提取高频和低频的方法比较简单,直接缩放
    octaves = []
    for i in range(octave_n - 1):
        hw = img.shape[:2]
        lo = resize(img, np.int32(np.float32(hw) / octave_scale))
        hi = img - resize(lo, hw)
        img = lo
        octaves.append(hi)
    # 先生成低频的图像,再依次放大并加上高频
    for octave in range(octave_n):
        if octave > 0:
            hi = octaves[-octave]
            img = resize(img, hi.shape[:2]) + hi
        for i in range(iter_n):
            g = calc_grad_tiled(img, t_grad)
            img += g * (step / (np.abs(g).mean() + 1e-7))
            print('.', end=' ')
    img = img.clip(0, 255)
    savearray(img, 'deepdream.jpg')
if __name__ == '__main__':
    img0 = PIL.Image.open('test.jpg')
    img0 = np.float32(img0)
    # name = 'mixed4d_3x3_bottleneck_pre_relu'
    name = 'mixed4c'
    # channel = 139
    layer_output = graph.get_tensor_by_name('import/%s:0' % name)
    # render_deepdream(layer_output[:, :, :, channel], img0, iter_n=150)
    render_deepdream(tf.square(layer_output), img0)

三、代码下载地址

下载地址

目录
相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
106 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
2月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
5059 3
|
29天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
70 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
93 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
95 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
87 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
124 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
123 0
|
4月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
90 0
|
4月前
|
C# 开发者 前端开发
揭秘混合开发新趋势:Uno Platform携手Blazor,教你一步到位实现跨平台应用,代码复用不再是梦!
【8月更文挑战第31天】随着前端技术的发展,混合开发日益受到开发者青睐。本文详述了如何结合.NET生态下的两大框架——Uno Platform与Blazor,进行高效混合开发。Uno Platform基于WebAssembly和WebGL技术,支持跨平台应用构建;Blazor则让C#成为可能的前端开发语言,实现了客户端与服务器端逻辑共享。二者结合不仅提升了代码复用率与跨平台能力,还简化了项目维护并增强了Web应用性能。文中提供了从环境搭建到示例代码的具体步骤,并展示了如何创建一个简单的计数器应用,帮助读者快速上手混合开发。
108 0

热门文章

最新文章