目标检测进阶:使用深度学习和 OpenCV 进行目标检测

简介: 目标检测进阶:使用深度学习和 OpenCV 进行目标检测

使用深度学习和 OpenCV 进行目标检测

基于深度学习的对象检测时,您可能会遇到三种主要的对象检测方法:

  • Faster R-CNNs (Ren et al., 2015)
  • You Only Look Once (YOLO) (Redmon et al., 2015)
  • Single Shot Detectors (SSD)(Liu 等人,2015 年)

Faster R-CNNs 可能是使用深度学习进行对象检测最“听说”的方法;然而,该技术可能难以理解(特别是对于深度学习的初学者)、难以实施且难以训练。

此外,即使使用“更快”的 R-CNN 实现(其中“R”代表“区域提议”),算法也可能非常慢,大约为 7 FPS。

如果追求纯粹的速度,那么我们倾向于使用 YOLO,因为这种算法要快得多,能够在 Titan X GPU 上处理 40-90 FPS。 YOLO 的超快变体甚至可以达到 155 FPS。

YOLO 的问题在于它的准确性不高。

最初由 Google 开发的 SSD 是两者之间的平衡。该算法比 Faster R-CNN 更直接。

MobileNets:高效(深度)神经网络

image-20211220132955216

在构建对象检测网络时,我们通常使用现有的网络架构,例如 VGG 或 ResNet,这些网络架构可能非常大,大约 200-500MB。 由于其庞大的规模和由此产生的计算数量,诸如此类的网络架构不适合资源受限的设备。 相反,我们可以使用 Google 研究人员的另一篇论文 MobileNets(Howard 等人,2017 年)。我们称这些网络为“MobileNets”,因为它们专为资源受限的设备而设计,例如您的智能手机。 MobileNet 与传统 CNN 的不同之处在于使用了深度可分离卷积。 深度可分离卷积背后的一般思想是将卷积分成两个阶段:

  • 3×3 深度卷积。
  • 随后是 1×1 逐点卷积。

这使我们能够实际减少网络中的参数数量。 问题是牺牲了准确性——MobileNets 通常不如它们的大哥们准确…… ……但它们的资源效率要高得多。

使用 OpenCV 进行基于深度学习的对象检测

MobileNet SSD 首先在 COCO 数据集(上下文中的常见对象)上进行训练,然后在 PASCAL VOC 上进行微调,达到 72.7% mAP(平均精度)。

因此,我们可以检测图像中的 20 个对象(背景类为 +1),包括飞机、自行车、鸟、船、瓶子、公共汽车、汽车、猫、椅子、牛、餐桌、狗、马、摩托车、人、盆栽 植物、羊、沙发、火车和电视显示器。

在本节中,我们将使用 OpenCV 中的 MobileNet SSD + 深度神经网络 (dnn) 模块来构建我们的目标检测器。

打开一个新文件,将其命名为 object_detection.py ,并插入以下代码:

import numpy as np
import cv2
if __name__=="__main__":
    image_name = '11.jpg'
    prototxt = 'MobileNetSSD_deploy.prototxt.txt'
    model_path = 'MobileNetSSD_deploy.caffemodel'
    confidence_ta = 0.2
    # 初始化MobileNet SSD训练的类标签列表
    # 检测,然后为每个类生成一组边界框颜色
    CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
               "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
               "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
               "sofa", "train", "tvmonitor"]
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

导入需要的包。

定义全局参数:

  • image_name:输入图像的路径。
  • prototxt :Caffe prototxt 文件的路径。
  • model_path :预训练模型的路径。
  • confidence_ta :过滤弱检测的最小概率阈值。 默认值为 20%。

接下来,让我们初始化类标签和边界框颜色。

    # load our serialized model from disk
    print("[INFO] loading model...")
    net = cv2.dnn.readNetFromCaffe(prototxt, model_path)
    # 加载输入图像并为图像构造一个输入blob
    # 将大小调整为固定的300x300像素。
    # (注意:SSD模型的输入是300x300像素)
    image = cv2.imread(image_name)
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843,
                                 (300, 300), 127.5)
    # 通过网络传递blob并获得检测结果和
    # 预测
    print("[INFO] computing object detections...")
    net.setInput(blob)
    detections = net.forward()

从磁盘加载模型。

读取图片。

提取高度和宽度(第 35 行),并从图像中计算一个 300 x 300 像素的 blob。

将blob放入神经网络。

计算输入的前向传递,将结果存储为 detections。

    # 循环检测结果
    for i in np.arange(0, detections.shape[2]):
        # 提取与数据相关的置信度(即概率)
        # 预测
        confidence = detections[0, 0, i, 2]
        # 通过确保“置信度”来过滤掉弱检测
        # 大于最小置信度
        if confidence > confidence_ta:
            # 从`detections`中提取类标签的索引,
            # 然后计算物体边界框的 (x, y) 坐标
            idx = int(detections[0, 0, i, 1])
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            # 显示预测
            label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
            print("[INFO] {}".format(label))
            cv2.rectangle(image, (startX, startY), (endX, endY),
                          COLORS[idx], 2)
            y = startY - 15 if startY - 15 > 15 else startY + 15
            cv2.putText(image, label, (startX, y),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
    # show the output image
    cv2.imshow("Output", image)
    cv2.imwrite("output.jpg", image)
    cv2.waitKey(0)

循环检测,首先我们提取置信度值。

如果置信度高于我们的最小阈值,我们提取类标签索引并计算检测到的对象周围的边界框。

然后,提取框的 (x, y) 坐标,我们将很快使用它来绘制矩形和显示文本。

接下来,构建一个包含 CLASS 名称和置信度的文本标签。

使用标签,将其打印到终端,然后使用之前提取的 (x, y) 坐标在对象周围绘制一个彩色矩形。

通常,希望标签显示在矩形上方,但如果没有空间,我们会将其显示在矩形顶部下方。

最后,使用刚刚计算的 y 值将彩色文本覆盖到图像上。

运行结果:

image-20211226080928065

使用 OpenCV 检测视频

打开一个新文件,将其命名为 video_object_detection.py ,并插入以下代码:

video_name = '12.mkv'
prototxt = 'MobileNetSSD_deploy.prototxt.txt'
model_path = 'MobileNetSSD_deploy.caffemodel'
confidence_ta = 0.2

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
           "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
           "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(prototxt, model_path)

# initialze the video stream, allow the camera to sensor to warmup,
# and initlaize the FPS counter
print('[INFO] starting video stream...')
vs = cv2.VideoCapture(video_name)
fps = 30    #保存视频的FPS,可以适当调整
size=(600,325)
fourcc=cv2.VideoWriter_fourcc(*'XVID')
videowrite=cv2.VideoWriter('output.avi',fourcc,fps,size)
time.sleep(2.0)

定义全局参数:

  • video_name:输入视频的路径。
  • prototxt :Caffe prototxt 文件的路径。
  • model_path :预训练模型的路径。
  • confidence_ta :过滤弱检测的最小概率阈值。 默认值为 20%。

接下来,让我们初始化类标签和边界框颜色。

加载模型。

初始化VideoCapture对象。

设置VideoWriter对象以及参数。size的大小由下面的代码决定,需要保持一致,否则不能保存视频。

image-20211226162055043

接下就是循环视频的帧,然后输入到检测器进行检测,这一部分的逻辑和图像检测一致。代码如下:

# loop over the frames from the video stream
while True:
    ret_val, frame = vs.read()
    if ret_val is False:
        break
    frame = imutils.resize(frame, width=1080)
    print(frame.shape)
    # grab the frame dimentions and convert it to a blob
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5)

    # pass the blob through the network and obtain the detections and predictions
    net.setInput(blob)
    detections = net.forward()

    # loop over the detections
    for i in np.arange(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with
        # the prediction
        confidence = detections[0, 0, i, 2]

        # filter out weak detections by ensuring the `confidence` is
        # greater than the minimum confidence
        if confidence > confidence_ta:
            # extract the index of the class label from the
            # `detections`, then compute the (x, y)-coordinates of
            # the bounding box for the object
            idx = int(detections[0, 0, i, 1])
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # draw the prediction on the frame
            label = "{}: {:.2f}%".format(CLASSES[idx],
                                         confidence * 100)
            cv2.rectangle(frame, (startX, startY), (endX, endY),
                          COLORS[idx], 2)
            y = startY - 15 if startY - 15 > 15 else startY + 15
            cv2.putText(frame, label, (startX, y),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
    # show the output frame
    cv2.imshow("Frame", frame)
    videowrite.write(frame)
    key = cv2.waitKey(1) & 0xFF

    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        break
videowrite.release()
# do a bit of cleanup
cv2.destroyAllWindows()
vs.release()

运行结果:

https://www.bilibili.com/video/BV19i4y197kh?spm_id_from=333.999.0.0
完整的代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/71355349

目录
相关文章
|
29天前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
54 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的2D目标检测
2D目标检测是深度学习中的一个关键任务,旨在识别图像中的目标对象,并在每个目标对象周围生成一个边界框。该任务在自动驾驶、视频监控、机器人视觉等领域具有广泛应用。
56 5
|
29天前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
57 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
26天前
|
机器学习/深度学习 算法 安全
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
22 0
|
27天前
|
机器学习/深度学习 传感器 编解码
深度学习之地球观测中的目标检测
基于深度学习的地球观测中的目标检测是将深度学习技术应用于遥感数据中以自动识别和定位目标物体的过程。这一技术迅速成为遥感领域的研究热点,主要原因在于地球观测(Earth Observation, EO)平台和遥感技术的进步带来了海量的高分辨率数据,而深度学习技术在目标检测、图像识别等任务上的显著成功为其提供了强有力的支持。
27 0
|
2月前
|
机器学习/深度学习 传感器 监控
红外小目标检测:基于深度学习
本文介绍了红外小目标检测技术的优势、基本原理及常用方法,包括背景抑制、滤波、模型和深度学习等,并探讨了多传感器融合的应用。通过一个基于深度学习的实战案例,展示了从数据准备到模型训练的全过程。最后,文章展望了该技术在军事、安防、交通等领域的广泛应用及未来发展趋势。
|
3月前
|
机器学习/深度学习 编解码 自动驾驶
lidar激光雷达介绍,以及使用激光雷达数据通过深度学习做目标检测
lidar激光雷达介绍,以及使用激光雷达数据通过深度学习做目标检测
59 0
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
286 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
47 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
下一篇
无影云桌面