到目前为止,我们大多数人都知道,在当今时代,人工智能及其子领域机器学习技术与人类智能没什么关系。人工智能/机器学习技术主要涉及识别数据模式和自动执行一些独立的任务,包括可标记欺诈性金融交易的算法、回答客户问题的聊天机器人等。你猜怎么着?IT主管们很看重其巨大的潜力。
根据2月发布的针对IT主管的“首席信息官技术民意调查”(CIO Tech Poll),62%的受访者认为人工智能/机器学习是最具颠覆性的技术,42%的受访者认为这些技术具有最大的影响力——这两项数据使人工智能/机器学习技术的百分比是其最强竞争对手(大数据分析技术)的两倍。令人印象深刻的是,有18%的人已经在生产中使用了人工智能/机器学习解决方案。
7月份,在“首席信息官疫情业务影响调查(CIO Pandemic Business Impact Survey)”中提出了一个更具煽动性的问题:“您公司对考虑更多使用人工智能/机器学习技术以减少或降低人力资源成本的可能性有多大?”将近一半(48%)的受访者表示,这样做的可能性很大或有可能。这意味着,随着经济衰退的加剧,对人工智能/机器学习解决方案的需求可能会大大增加。
现在是时候来制定您的人工智能/机器学习技术策略了。为此,媒体记者和分析师剖析了这些问题,并提供了一些有意义的建议。
智能企业
尽管毫无疑问,人工智能/机器学习技术会取代某些工作,但是马修·芬尼根(Matthew Finnegan)在“计算机世界”平台上发表的文章,名为“工作中的人工智能:您的下一位同事可能是一个算法”,其着重讨论了人工智能系统与人类合作以提高工作效率的情况。最有趣的例子之一是“协作机器人”,它与工厂车间的工人一起工作,以提高员工的能力。
高效的人工智能/机器学习解决方案有多种形式,例如在“首席信息官”平台,克林特·博尔顿(Clint Boulton)在“5个机器学习成功案例:内部观察”一文中讲述了一系列新的案例研究。此文读起来就像是机器学习应用的精选合集:通过预测分析来预测医学治疗结果,通过密集数据分析实现个性化产品推荐,通过图像分析以提高作物产量。一个清晰的模式:当某个组织看到机器学习技术在某一领域取得成功后,类似的机器学习技术就会经常应用于其他领域。
撰稿人尼尔·温伯格(Neil Weinberg)在“人工智能如何创建自动化运营数据中心”一文中着重介绍了人工智能/机器学习技术的高度实用性直接使IT部门受益。根据温伯格的说法,人工智能/机器学习技术可以处理电源、设备和工作负载管理工作,并可在无需人工干预情况下持续进行优化(就硬件而言,可以预测故障)。数据中心的安全性也会受益于人工智能/机器学习功能,其既可以提醒管理员存在异常情况,也可以识别漏洞及其提供补救措施。
各种形式的机器学习技术通常从发现大量数据的模式开始。但在许多情况下,正如“首席安全官”平台的撰稿人玛利亚·科洛夫(Maria Korlov)在“您的人工智能和机器学习项目的安全性如何?”一文中所述,这些数据可能都是敏感的。科洛夫指出,数据安全性通常是事后才想到的,这使得某些机器学习系统本身就很容易发生数据泄露。其解决方案是从一开始就制定明确的安全策略,而在大型组织中,则要专门任命一名高管来管理与人工智能相关的风险。
那么您应该在哪里设计人工智能/机器学习解决方案呢?“信息世界”平台的特约编辑马丁·海勒(Martin Heller)认为,公共云提供商提供了极具吸引力的方案,但您需要仔细选择。在“如何选择云端机器学习平台”一文中,海勒概述了每个云端机器学习平台应具备的12种功能以及为什么需要这些功能。由于有如此多的数据分析工作负载转移到云端,因此利用机器学习技术来获取更大的价值,这是很合理的——但至关重要的是,您应该确保能够使用到最好的机器学习框架,并从预训练的模型中受益。
我们距离与人类智能相当的人工智能仍还差几代。同时,人工智能/机器学习技术将逐渐渗透到几乎所有类型的应用程序中,从而减少一些繁琐的工作,并提供前所未有的功能。难怪IT主管们认为,这些技术将产生最大的影响。