吴甘沙最新演讲:AI为互联网行业补坑 自动驾驶前景看好

简介:

 

2016年12月4日,虎嗅打造的创新创业嘉年华“F&M;创新节”在北京举办。活动中,驭势科技CEO吴甘沙发表了题为“互联网到人工智能的第一座高峰”的主题演讲。他指出互联网时代在给大众带来极大便利的同时,也“挖了许多坑”,而“互联网挖的坑需要人工智能来填”。此外,吴甘沙还总结了自己在创业路上的一些经验教训:“你要想明白到达明天的话,可能需要远望后天”。

 

大数据文摘作为大会合作方,从现场发来第一手资料:

 

以下内容根据主办方提供速记整理,在不改变原意的前提下有部分删改。



◆ ◆ 

“时来天地皆同力,远去英雄不自由”

 

讲座一开始,吴引用了唐朝诗人罗隐《筹笔驿》中的经典名句“时来天地皆同力,运去英雄不自由”,用在此处,并非感慨时运不济,胜败都是由外力决定的。相反,吴表示“2016年开始,我们又将看到新的机会”,很显然,这里只是强调逆天改命并非智者所为,顺应历史的潮流,顺应时代的发展,英雄也不例外。时代的更迭是种必然。

 

吴承认互联网从本质上改变过我们的生活,带给我们了三样东西:

1.解决了信息不对称的问题。建立各种各样的连接,人和信息的连接,人和商品的连接,人和人的连接,人和服务的连接,人和闲置资源的连接等等;

2.使得交易成本最小化。无论是金钱的成本,还是时间的成本最小化;

3.终于能够汇集长尾人群。而不再是头部的高端客户才能从服务当中获益。

 

我们看到互联网解决的问题主要在于信息普及以及降低交易成本的方面,但是,后者仅涉及交易成本,是整个利益链的其中一环,商品成本还包括生成成本。


“但我们发现发展到现在的阶段,互联网本身也碰到了一些瓶颈。交易成本虽然最小化了,但生产成本还是那样,生产成本就是生产资料和劳动力。”这脑洞有点大啊,这是说消费方式已经确定了,但是驾车的人多余了,车也不一定还用原来的车了,需要进步咯?

 

“拿网约车来讲,网约车带来很多的便利,帮助我们建立了连接,等到补贴过去以后大家发现打车的费用跟出租车没有太大的变化。因为从生产资料跟劳动力这块,互联网并没有带来本质性的变化。网约车汇集长尾人群,但社会总体是不是利益最大化,也许未必。原来这几十万个兼职的司机,在上下班高峰时间不上路的。但他们上路了以后,使得整个道路变的更堵了,所有的这些问题互联网是没有办法解决的。必须得通过人工智能来解决,互联网挖的坑需要人工智能来填。人工智能从本质上来说是用机器来做人能做的事情,生产资料同时是劳动力。”

 

网约车不但没有给人们出行带来多少方便,某种程度上,反倒成了道路堵塞的元凶。因此,人工智能的科技成果能使这些问题很好的解决吗?


◆ ◆ 

“互联网挖的坑需要人工智能来填”

 

今年是人工智能革命的特殊一年,在市场规模、辐射面、持续时间的尺度上,跟PC以及互联网同等级别的。人工智能一定要跟具体的行业和产业结合在一起,未来10年智能驾驶是最重要的人工智能产业。 为检验是否能完成这个任务,吴提出了四个明确的标准:

1.市场是不是足够大,是否处在快速增长起的时点;

2.是不是真正解决了客户的痛点。能够提升效率,我们希望做一个产品,它并不是维他命吃了有营养不吃无所谓;

3.那能否创造商业模式创新的空间;

4.护城河是不是足够的宽和深。

 

“逐一来看,市场确实是足够大的,它涉及到了三个万亿美金的市场,全球汽车市场万亿美金,出行市场无论是Uber还是滴滴都是万亿美金的规模,给我们带来的社会整体效益又是万亿美金。

 

摩根斯坦利认为智能驾驶一年可以给美国带来1.3万亿美金的社会效益,相当于美国GDP8%。为什么有如此之大的社会效益,我们不妨做模拟。我们要解决碰到客户痛点的问题和效率问题,我们拿北京规模的城市作为案例。假设说一座城市有600万辆机动车,大部分是私家车,它会带来什么问题?车多带来堵车的问题,堵车导致‘路怒’和违规驾驶,又会导致很多的交通事故。今天每年全世界因为交通事故死亡140万人,中国几乎占1/4,交通事故会使得路更堵,使得百公里的油耗上升,能源浪费,使得空气受到污染。车多又会导致停车很困难,一辆车90%以上的时间是停着的,而且需要两个停车位。根据美国的统计,汽车行驶历程30%-35%为了停车,很多大城市15%以上的土地用来停车,房价更贵。很多年轻人只能生活在远离城市中心的郊区,导致了‘睡城’和上下班的潮汐效应。我们每天大量的时间浪费在路上,北京一天一个人2.5小时在路上,全中国20多亿小时在路上。回去五六年前古埃及人建设大金字塔花了这么长的时间,我们浪费如此多的生产力。为什么大家都要买私家车,因为打车难和贵。我们希望通过科技和人工智能10年的时间改变现状,我们希望10年以后也许这样的城市里,它的机动车保有量从600万辆到300万辆,但其中有200万辆是无人驾驶的出租车。可以真正地解决打车难和贵的问题。

 

首先,我把这200万辆无人驾驶出租车根据大数据的规律,根据全城人群的分布和出行的规律分布在城市的各个角落,保证每个人一叫车两分钟之内可以来车。打车的费用可以降到今天1/3,人力成本去掉,‘空驶’浪费没了,新能源每公里燃料成本比今天的燃料低很多。原来制约无人驾驶重要因素是激光雷达,一台激光雷达今年是70万人民币。但未来5年会降到500美金以下,这意味着大规模的商业化成为可能。从用户端看,这是波士顿咨询集团和达沃斯论坛对全世界很多城市的决策者做的调研。88%的人希望像无人驾驶这样的新技术,可以在未来的10年里得到商业化。真正商业化了以后,可以给我们带来很多的好处。”

 



那么未来的车是什么样子的?吴大胆假设,“未来车就是这么整齐的在路上走,对道路的利用效率提升,交通事故减少,能源消耗变的更少,因为第一辆车把大部分的封阻挡掉。北京的平均速度20公里,除了堵车还有十字路口和红绿灯,未来如果都是无人驾驶汽车,保证每辆车按照特定的速度,特定次序通行,红绿灯完全可以拿掉的。未来所有的这些车都在路上出行,它对停车位的需求也会大量地减少。即使需要停车,一个小小的停车位就可能停进去。大家知道今天的停车位必须得足够大,因为有很多的新手停不进去,停进去还要有足够的空间下车。未来无人驾驶的出租车并不需要那么多的停车空间,大量的停车空间会被释放出来。

 

商业模式创新空间巨大,10年后汽车可能长的不再像汽车,更像一个商业空间。在这商业空间里可以创造人与信息跟内容和服务接触的触点,未来的车长这样。放一套办公设备就变成了移动的写字楼,交通工具的属性逐渐降低,商业空间的属性逐步提高。未来每一条路和每一辆车可以成为移动地产。


未来10年所有跟人或者物的交通相关的产业都会被重新定义,无论你是出租业、停车业、写字楼还是服务业还是物流。200万辆出租车上下班可以接人,中午可以送餐送货。金融业等所有相关产业都会被重新定义。产业的护城河非常之宽,非常深,不仅是资本和人才的问题,还有品牌数据和专利的壁垒,以及技术。”


◆ ◆ 

“号称做智能驾驶,没有从车库开始创业那就是耍流氓!”


吴甘沙接着对他们公司的未来进行了预测:

 

“我们希望2-3年内成为中国第一家能够在辅助驾驶以及无人驾驶领域商业化的公司,我们从车库开始创业。作为创业公司,如果号称做智能驾驶,没有从车库开始创业那就是耍流氓嘛。

 

我们是国内唯一能在高速公路上实现100公里时速的辅助驾驶公司,大家可以看到这样的车不仅仅能够在车道里做很好的行驶,还得有自主超车的功能。大部分的时间在中间的车道走,如果前车实在太慢了就自己拐到快车道然后超车,然后再回来。同时,我们也在探索无人驾驶,左边的车适合最后几公里的出行,地铁站出来离家几公里的时候,今天只有黑车和摩的,未来这种小车适合做最后几公里运行。右边的车是我们完全重新设计的,针对共享出行的一款车,大家可以看到两排座椅对着坐,没有方向盘和刹车。研发基地已经开始常态化的测试,明年1月份即将开始试运营。这款车对高科技园区和森林公园,以及主题公园、度假村非常适合。无人驾驶很大的问题就是最小化维护成本,我们在里面做了一个非常有意思的功能,当他发现自己没电的时候,会自己找到一个带无线充电停车位停进去开始充电。”

 

最后,和其他的创业者类似,吴同样深知创业之路的艰辛和悲壮,但是作为有梦想的人,他们的团队也都是一群坚定勇敢、不屈不挠的战士:

 

“智能驾驶未来的前景非常美好,但又是一个非常艰巨的里程。我想引用耐克创始人说的这句话,面临这种挑战‘懦夫从不启程,弱者在途中死去,只有强者会继续前行’。我们不确定会不会成为最后的强者,但我们有相信的力量,我们相信‘相信 ’的力量,希望能够真正有人工智能改变未来的世界。”

 

◆ ◆ 

“你要想明白到达明天的话,可能需要远望后天!”


之后主持人补充了一个问题,吴的回答同样精彩。

 

主持人:互联网与人工智能算是两个领域,您怎样从英特尔的积累推动做无人驾驶和智能驾驶,如何看待未来智能制造市场。

   

吴甘沙:互联网和人工智能是两领域,过去在英特尔的积累不在互联网。英特尔只是抓住了互联网的前半段机遇,后半段的移动互联网来说英特尔做的不是特别成功。恰恰是这段并不成功的经历让我有更多的反思,我想明白有的时候不能仅仅盯着竞争对手,你需要看清楚这个时代。你要想明白到达明天的话,可能需要远望后天,这是为什么2013年开始我在看人工智能领域。人工智能大家都想象是很理论的东西,很算法的东西,其实未必如此。你要让人工智能落地的话,其实需要做很多的脏活和累活,你需要有很多系统工程的能力,你要有解决规模和成本的能力。我原来在英特尔的很多经验可以非常地有帮助,其实我们公司也是算法+系统工程+汽车电子,形成积木组合式的创新才能做出来。如果只有算法完全做不起来,未来制造也是在智能驾驶中不可或缺的一环。如何可以在这么长的产业链上可以率先推向市场,形成规模和成本的效应,需要智能制造。所以这些也需要我们学习。

原文发布时间为:2016-12-06


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
12天前
|
传感器 机器学习/深度学习 人工智能
AI在自动驾驶汽车中的应用与未来展望
AI在自动驾驶汽车中的应用与未来展望
63 9
|
1月前
|
人工智能 运维 安全
阿里云研发副总裁蔡德忠受邀参加乌镇峰会,畅谈AI与下一代互联网
2024年乌镇峰会“下一代互联网论坛”近日举办,主题为“创新驱动,安全赋能,共筑开放与安全的下一代互联网”。阿里云智能集团研发副总裁,基础设施网络研发负责人蔡德忠受邀参与圆桌讨论,并就人工智能(AI)与下一代互联网的融合发展分享了前瞻性见解。
|
1月前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
123 4
|
1月前
|
传感器 机器学习/深度学习 人工智能
自动驾驶汽车中的AI:从概念到现实
【10月更文挑战第31天】自动驾驶汽车曾是科幻概念,如今正逐步成为现实。本文探讨了自动驾驶汽车的发展历程,从早期的机械控制到现代的AI技术应用,包括传感器融合、计算机视觉、路径规划和决策控制等方面。尽管面临安全性和法规挑战,自动驾驶汽车在商用运输、公共交通和乘用车领域展现出巨大潜力,未来将为人类带来更安全、便捷、环保的出行方式。
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
187 2
|
6月前
|
人工智能 供应链 算法
未来AI技术的革新与应用前景
随着人工智能(AI)技术的快速发展,未来的创新与应用前景变得更加广阔。本文探讨了AI技术在各个领域的应用,以及未来可能出现的革新,展望了AI技术对社会、经济和科技发展的深远影响。
|
2月前
|
人工智能 自动驾驶 机器人
【通义】AI视界|苹果自动驾驶汽车项目画上句号:加州测试许可被取消
本文精选了24小时内的重要科技新闻,包括Waymo前CEO批评马斯克对自动驾驶的态度、AMD发布新款AI芯片但股价波动、苹果造车项目终止、Familia.AI推出家庭应用以及AI逆向绘画技术的进展。更多内容请访问通义官网体验。
|
4月前
|
人工智能 自然语言处理 安全
谷歌:AI正在毁掉互联网!
【8月更文挑战第11天】这篇论文探讨了生成式多模态人工智能(GenAI)的滥用风险,基于2023-2024年间约200起事件分析,构建了GenAI滥用策略分类体系。GenAI虽潜力巨大,但滥用可能导致虚假信息传播、隐私泄露和社会动荡。论文识别了数据中毒、模型窃取及对抗样本攻击等多种滥用手段,并揭示了出于经济或政治动机的具体案例。同时,论文呼吁通过技术进步、法律监管及跨领域合作共同防范GenAI滥用,确保其健康发展。[链接: https://arxiv.org/abs/2406.13843]
136 60
|
6月前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用及其前景
【6月更文挑战第9天】本文将探讨AI技术在医疗领域的应用及其前景。随着科技的不断发展,人工智能(AI)已经成为了当今社会的热门话题。在医疗领域,AI技术的应用也日益广泛,为医生和患者带来了许多便利。本文将详细介绍AI技术在医疗领域的应用,并展望其未来的发展前景。
97 0
|
4月前
|
人工智能 搜索推荐 API
langchain 入门指南 - 让 AI 从互联网获取信息
langchain 入门指南 - 让 AI 从互联网获取信息
99 1