成为梵高、毕加索?你最喜欢的人脸识别与神经风格迁移来啦!

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 成为梵高、毕加索?你最喜欢的人脸识别与神经风格迁移来啦!


1   What Is Face Recognition


首先简单介绍一下人脸验证(face verification)和人脸识别(face recognition)的区别。


  • 人脸验证:输入一张人脸图片,验证输出与模板是否为同一人,即一对一问题。
  • 人脸识别:输入一张人脸图片,验证输出是否为K个模板中的某一个,即一对多问题。


一般地,人脸识别比人脸验证更难一些。因为假设人脸验证系统的错误率是1%,那么在人脸识别中,输出分别与K个模板都进行比较,则相应的错误率就会增加,约K%。模板个数越多,错误率越大一些。


2   One Shot Learning


One-shot learning就是说数据库中每个人的训练样本只包含一张照片,然后训练一个CNN模型来进行人脸识别。若数据库有K个人,则CNN模型输出softmax层就是K维的。


但是One-shot learning的性能并不好,其包含了两个缺点:


  • 每个人只有一张图片,训练样本少,构建的CNN网络不够健壮。
  • 若数据库增加另一个人,输出层softmax的维度就要发生变化,相当于要重新构建CNN网络,使模型计算量大大增加,不够灵活。


为了解决One-shot learning的问题,我们先来介绍相似函数(similarity function)。相似函数表示两张图片的相似程度,用d(img1,img2)来表示。若d(img1,img2)较小,则表示两张图片相似;若d(img1,img2)较大,则表示两张图片不是同一个人。相似函数可以在人脸验证中使用:


  • d(img1,img2)≤τ : 一样
  • d(img1,img2)>τ : 不一样


对于人脸识别问题,则只需计算测试图片与数据库中K个目标的相似函数,取其中d(img1,img2)最小的目标为匹配对象。若所有的d(img1,img2)都很大,则表示数据库没有这个人。

image.png



3  Siamese Network


若一张图片经过一般的CNN网络(包括CONV层、POOL层、FC层),最终得到全连接层FC,该FC层可以看成是原始图片的编码encoding,表征了原始图片的关键特征。这个网络结构我们称之为Siamese network。也就是说每张图片经过Siamese network后,由FC层每个神经元来表征。

image.png



4   Triplet Loss


构建人脸识别的CNN模型,需要定义合适的损失函数,这里我们将引入Triplet Loss


Triplet Loss需要每个样本包含三张图片:靶目标(Anchor)、正例(Positive)、反例(Negative),这就是triplet名称的由来。顾名思义,靶目标和正例是同一人,靶目标和反例不是同一人。Anchor和Positive组成一类样本,Anchor和Negative组成另外一类样本。

image.png

我们希望上一小节构建的CNN网络输出编码f(A)接近f(D),即||f(A)−f(D)||^2尽可能小,而||f(A)−f(N)||^2尽可能大,数学上满足:

image.png

根据上面的不等式,如果所有的图片都是零向量,即f(A)=0,f(P)=0,f(N)=0,那么上述不等式也满足。但是这对我们进行人脸识别没有任何作用,是不希望看到的。我们希望得到||f(A)−f(P)||^2远小于||f(A)−F(N)||^2。所以,我们添加一个超参数α,且α>0,对上述不等式做出如下修改:

image.png

顺便提一下,这里的αα也被称为边界margin,类似与支持向量机中的margin。举个例子,若d(A,P)=0.5,α=0.2,则d(A,N)≥0.7。

image.png

关于训练样本,必须保证同一人包含多张照片,否则无法使用这种方法。例如10k张照片包含1k个不同的人脸,则平均一个人包含10张照片。这个训练样本是满足要求的。


然后,就可以使用梯度下降算法,不断训练优化CNN网络参数,让J不断减小接近0。


同一组训练样本,A,P,N的选择尽可能不要使用随机选取方法。因为随机选择的A与P一般比较接近,A与N相差也较大,毕竟是两个不同人脸。这样的话,也许模型不需要经过复杂训练就能实现这种明显识别,但是抓不住关键区别。所以,最好的做法是人为选择A与P相差较大(例如换发型,留胡须等),A与N相差较小(例如发型一致,肤色一致等)。这种人为地增加难度和混淆度会让模型本身去寻找学习不同人脸之间关键的差异,“尽力”让d(A,P)d(A,P)更小,让d(A,N)d(A,N)更大,即让模型性能更好。


下面给出一些A,P,N的例子:

image.png

值得一提的是,现在许多商业公司构建的大型人脸识别模型都需要百万级别甚至上亿的训练样本。如此之大的训练样本我们一般很难获取。但是一些公司将他们训练的人脸识别模型发布在了网上,可供我们使用。


5  Face Verification and Binary Classification


除了构造triplet loss来解决人脸识别问题之外,还可以使用二分类结构。做法是将两个siamese网络组合在一起,将各自的编码层输出经过一个逻辑输出单元,该神经元使用sigmoid函数,输出1则表示识别为同一人,输出0则表示识别为不同人。结构如下:

image.png

image.png


6   What Is Neural Style Transfer


神经风格迁移是CNN模型一个非常有趣的应用。它可以实现将一张图片的风格“迁移”到另外一张图片中,生成具有其特色的图片。比如我们可以将毕加索的绘画风格迁移到我们自己做的图中,生成类似的“大师作品”,很酷不是吗?


下面列出几个神经风格迁移的例子:

image.png

一般用C表示内容图片,S表示风格图片,G表示生成的图片。


7  What Are Deep ConvNets Learning


在进行神经风格迁移之前,我们先来从可视化的角度看一下卷积神经网络每一层到底是什么样子?它们各自学习了哪些东西。


典型的CNN网络如下所示:

image.png

首先来看第一层隐藏层,遍历所有训练样本,找出让该层激活函数输出最大的9块图像区域;然后再找出该层的其它单元(不同的滤波器通道)激活函数输出最大的9块图像区域;最后共找9次,得到9 x 9的图像如下所示,其中每个3 x 3区域表示一个运算单元。

image.png

可以看出,第一层隐藏层一般检测的是原始图像的边缘和颜色阴影等简单信息。


继续看CNN的更深隐藏层,随着层数的增加,捕捉的区域更大,特征更加复杂,从边缘到纹理再到具体物体。

image.png


8  Cost Function


神经风格迁移生成图片G的cost function由两部分组成:C与G的相似程度和S与G的相似程度。

image.png

神经风格迁移的基本算法流程是:首先令G为随机像素点,然后使用梯度下降算法,不断修正G的所有像素点,使得J(G)不断减小,从而使G逐渐有C的内容和G的风格,如下图所示。

image.png



9  Content Cost Function


我们先来看J(G)的第一部分Jcontent(C,G),它表示内容图片C与生成图片G之间的相似度。


使用的CNN网络是之前训练好的模型,例如Alex-Net。C,S,G共用相同模型和参数。首先,需要选择合适的层数ll来计算Jcontent(C,G)。根据上一小节的内容,CNN的每个隐藏层分别提取原始图片的不同深度特征,由简单到复杂。如果l太小,则G与C在像素上会非常接近,没有迁移效果;如果l太深,则G上某个区域将直接会出现C中的物体。因此,ll既不能太浅也不能太深,一般选择网络中间层。

image.png


10   Style Cost Function


什么是图片的风格?利用CNN网络模型,图片的风格可以定义成第l层隐藏层不同通道间激活函数的乘积(相关性)。

image.png

例如我们选取第l层隐藏层,其各通道使用不同颜色标注,如下图所示。因为每个通道提取图片的特征不同,比如1通道(红色)提取的是图片的垂直纹理特征,2通道(黄色)提取的是图片的橙色背景特征。那么计算这两个通道的相关性大小,相关性越大,表示原始图片及既包含了垂直纹理也包含了该橙色背景;相关性越小,表示原始图片并没有同时包含这两个特征。也就是说,计算不同通道的相关性,反映了原始图片特征间的相互关系,从某种程度上刻画了图片的“风格”。

image.pngimage.png

image.png


11   1D and 3D Generalizations


我们之前介绍的CNN网络处理的都是2D图片,举例来介绍2D卷积的规则:

image.png

  • 输入图片维度:14 x 14 x 3
  • 滤波器尺寸:5 x 5 x 3,滤波器个数:16
  • 输出图片维度:10 x 10 x 16


将2D卷积推广到1D卷积,举例来介绍1D卷积的规则:

image.png

  • 输入时间序列维度:14 x 1
  • 滤波器尺寸:5 x 1,滤波器个数:16
  • 输出时间序列维度:10 x 16


对于3D卷积,举例来介绍其规则:

image.png

  • 输入3D图片维度:14 x 14 x 14 x 1

  • 滤波器尺寸:5 x 5 x 5 x 1,滤波器个数:16
  • 输出3D图片维度:10 x 10 x 10 x 16


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
深度学习教程 | CNN应用:人脸识别和神经风格转换
本节介绍计算机视觉中其他应用,包括:人脸识别、Siamese网络、三元组损失Triplet loss、人脸验证、CNN表征、神经网络风格迁移、1D与3D卷积。
3848 2
深度学习教程 | CNN应用:人脸识别和神经风格转换
|
机器学习/深度学习 数据库 计算机视觉
人脸识别和神经风格转换
人脸识别和神经风格转换
2203 0
|
6月前
|
弹性计算 Java PHP
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
对于初次购买阿里云产品的用户来说,第一步要做的是注册账号并完成实名认证,然后才是购买阿里云服务器或者其他云产品,本文为大家以图文形式展示一下新手用户从注册阿里云账号、实名认证到购买云服务器完整详细教程,以供参考。
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
|
5月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之uniapp框架如何使用阿里云金融级人脸识别
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
141 0
|
机器学习/深度学习 搜索推荐 计算机视觉
【阿里云OpenVI-人脸感知理解系列之人脸识别】基于Transformer的人脸识别新框架TransFace ICCV-2023论文深入解读
本文介绍 阿里云开放视觉智能团队 被计算机视觉顶级国际会议ICCV 2023接收的论文 "TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective"。TransFace旨在探索ViT在人脸识别任务上表现不佳的原因,并从data-centric的角度去提升ViT在人脸识别任务上的性能。
2178 341
|
6月前
对于阿里云OpenAPI的域名实名认证
【1月更文挑战第5天】【1月更文挑战第22篇】对于阿里云OpenAPI的域名实名认证
79 1
|
安全 数据安全/隐私保护
阿里云账号注册、实名认证、账号信息管理、密码找回及账号注销流程及常见问题
本文为大家详细介绍我们在注册阿里云账号,完成账号实名认证,管理账号信息,账号密码找回以及注销账号的详细流程及常见问题。
阿里云账号注册、实名认证、账号信息管理、密码找回及账号注销流程及常见问题

热门文章

最新文章

下一篇
无影云桌面