遗传算法的基本概念和实现,附Java实现案例!

简介: 基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法。该算法反映了自然选择的过程,即最适者被选定繁殖,并产生下一代。本文简要地介绍了遗传算法的基本概念和实现,希望能为读者展示启发式搜索的魅力。_

image.png

如上图(左)所示,遗传算法的个体由多条染色体组成,每条染色体由多个基因组成。上图(右)展示了染色体分割和组合的方式。_


遗传算法的概念

自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的特性,并且这些特性将添加到下一代中。如果父母具有更好的适应性,那么它们的后代将更易于存活。迭代地进行该自然选择的过程,最终,我们将得到由最适应环境的个体组成的一代。


这一概念可以被应用于搜索问题中。我们考虑一个问题的诸多解决方案,并从中搜寻出最佳方案。


遗传算法含以下五步:


初始化


个体评价(计算适应度函数)


选择运算


交叉运算


变异运算


初始化

该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。


个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。


在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中

image.png

种群、染色体和基因


个体评价(计算适应度函数)

个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。


选择运算

选择运算的目的是选出适应性最好的个体,并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。


交叉运算

交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。


举个例子,下图的交叉点为 3:

image.png

父母间在交叉点之前交换基因,从而产生了后代。

image.png

父母间交换基因,然后产生的新后代被添加到种群中。

image.png

变异运算

在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。

image.png

变异运算前后


变异运算可用于保持种群内的多样性,并防止过早收敛。


终止

在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。


#### 案例实现


种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。


这一迭代过程的伪代码:

START
Generate the initial population
Compute fitness
REPEAT
    Selection
    Crossover
    Mutation
    Compute fitness
UNTIL population has converged
STOP

Java 中的实例实现


以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。


如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望最大化适应度,并提供适应度达到最大的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度最低的个体被新的,适应度最高的后代所替代。

import java.util.Random;
/**
 *
 * @author Vijini
*/
//Main class
public class SimpleDemoGA {
    Population population = new Population();
    Individual fittest;
    Individual secondFittest;
    int generationCount = 0;
    public static void main(String[] args) {
        Random rn = new Random();
        SimpleDemoGA demo = new SimpleDemoGA();
        //Initialize population
        demo.population.initializePopulation(10);
        //Calculate fitness of each individual
        demo.population.calculateFitness();
        System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
        //While population gets an individual with maximum fitness
        while (demo.population.fittest < 5) {
            ++demo.generationCount;
            //Do selection
            demo.selection();
            //Do crossover
            demo.crossover();
            //Do mutation under a random probability
            if (rn.nextInt()%7 < 5) {
                demo.mutation();
            }
            //Add fittest offspring to population
            demo.addFittestOffspring();
            //Calculate new fitness value
            demo.population.calculateFitness();
            System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
        }
        System.out.println("\nSolution found in generation " + demo.generationCount);
        System.out.println("Fitness: "+demo.population.getFittest().fitness);
        System.out.print("Genes: ");
        for (int i = 0; i < 5; i++) {
            System.out.print(demo.population.getFittest().genes[i]);
        }
        System.out.println("");
    }
    //Selection
    void selection() {
        //Select the most fittest individual
        fittest = population.getFittest();
        //Select the second most fittest individual
        secondFittest = population.getSecondFittest();
    }
    //Crossover
    void crossover() {
        Random rn = new Random();
        //Select a random crossover point
        int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);
        //Swap values among parents
        for (int i = 0; i < crossOverPoint; i++) {
            int temp = fittest.genes[i];
            fittest.genes[i] = secondFittest.genes[i];
            secondFittest.genes[i] = temp;
        }
    }
    //Mutation
    void mutation() {
        Random rn = new Random();
        //Select a random mutation point
        int mutationPoint = rn.nextInt(population.individuals[0].geneLength);
        //Flip values at the mutation point
        if (fittest.genes[mutationPoint] == 0) {
            fittest.genes[mutationPoint] = 1;
        } else {
            fittest.genes[mutationPoint] = 0;
        }
        mutationPoint = rn.nextInt(population.individuals[0].geneLength);
        if (secondFittest.genes[mutationPoint] == 0) {
            secondFittest.genes[mutationPoint] = 1;
        } else {
            secondFittest.genes[mutationPoint] = 0;
        }
    }
    //Get fittest offspring
    Individual getFittestOffspring() {
        if (fittest.fitness > secondFittest.fitness) {
            return fittest;
        }
        return secondFittest;
    }
    //Replace least fittest individual from most fittest offspring
    void addFittestOffspring() {
        //Update fitness values of offspring
        fittest.calcFitness();
        secondFittest.calcFitness();
        //Get index of least fit individual
        int leastFittestIndex = population.getLeastFittestIndex();
        //Replace least fittest individual from most fittest offspring
        population.individuals[leastFittestIndex] = getFittestOffspring();
    }
}
//Individual class
class Individual {
    int fitness = 0;
    int[] genes = new int[5];
    int geneLength = 5;
    public Individual() {
        Random rn = new Random();
        //Set genes randomly for each individual
        for (int i = 0; i < genes.length; i++) {
            genes[i] = rn.nextInt() % 2;
        }
        fitness = 0;
    }
    //Calculate fitness
    public void calcFitness() {
        fitness = 0;
        for (int i = 0; i < 5; i++) {
            if (genes[i] == 1) {
                ++fitness;
            }
        }
    }
}
//Population class
class Population {
    int popSize = 10;
    Individual[] individuals = new Individual[10];
    int fittest = 0;
    //Initialize population
    public void initializePopulation(int size) {
        for (int i = 0; i < individuals.length; i++) {
            individuals[i] = new Individual();
        }
    }
    //Get the fittest individual
    public Individual getFittest() {
        int maxFit = Integer.MIN_VALUE;
        for (int i = 0; i < individuals.length; i++) {
            if (maxFit <= individuals[i].fitness) {
                maxFit = i;
            }
        }
        fittest = individuals[maxFit].fitness;
        return individuals[maxFit];
    }
    //Get the second most fittest individual
    public Individual getSecondFittest() {
        int maxFit1 = 0;
        int maxFit2 = 0;
        for (int i = 0; i < individuals.length; i++) {
            if (individuals[i].fitness > individuals[maxFit1].fitness) {
                maxFit2 = maxFit1;
                maxFit1 = i;
            } else if (individuals[i].fitness > individuals[maxFit2].fitness) {
                maxFit2 = i;
            }
        }
        return individuals[maxFit2];
    }
    //Get index of least fittest individual
    public int getLeastFittestIndex() {
        int minFit = 0;
        for (int i = 0; i < individuals.length; i++) {
            if (minFit >= individuals[i].fitness) {
                minFit = i;
            }
        }
        return minFit;
    }
    //Calculate fitness of each individual
    public void calculateFitness() {
        for (int i = 0; i < individuals.length; i++) {
            individuals[i].calcFitness();
        }
        getFittest();
    }
}


目录
相关文章
|
9天前
|
Java
Java中的抽象类:深入了解抽象类的概念和用法
Java中的抽象类是一种不能实例化的特殊类,常作为其他类的父类模板,定义子类行为和属性。抽象类包含抽象方法(无实现)和非抽象方法。定义抽象类用`abstract`关键字,子类继承并实现抽象方法。抽象类适用于定义通用模板、复用代码和强制子类实现特定方法。优点是提供抽象模板和代码复用,缺点是限制继承灵活性和增加类复杂性。与接口相比,抽象类可包含成员变量和单继承。使用时注意设计合理的抽象类结构,谨慎使用抽象方法,并遵循命名规范。抽象类是提高代码质量的重要工具。
25 1
|
11天前
|
设计模式 存储 Java
23种设计模式,享元模式的概念优缺点以及JAVA代码举例
【4月更文挑战第6天】享元模式(Flyweight Pattern)是一种结构型设计模式,旨在通过共享技术有效地支持大量细粒度对象的重用。这个模式在处理大量对象时非常有用,特别是当这些对象中的许多实例实际上可以共享相同的状态时,从而可以减少内存占用,提高程序效率
30 4
|
11天前
|
设计模式 Java 中间件
23种设计模式,适配器模式的概念优缺点以及JAVA代码举例
【4月更文挑战第6天】适配器模式(Adapter Pattern)是一种结构型设计模式,它的主要目标是让原本由于接口不匹配而不能一起工作的类可以一起工作。适配器模式主要有两种形式:类适配器和对象适配器。类适配器模式通过继承来实现适配,而对象适配器模式则通过组合来实现
30 4
|
28天前
使用ueditor实现多图片上传案例——实体类(Shopping.java)
使用ueditor实现多图片上传案例——实体类(Shopping.java)
18 0
|
23天前
Mybatis+mysql动态分页查询数据案例——分页工具类(Page.java)
Mybatis+mysql动态分页查询数据案例——分页工具类(Page.java)
20 1
|
7天前
|
Java 调度
Java中常见锁的分类及概念分析
Java中常见锁的分类及概念分析
13 0
|
8天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。
|
6天前
|
机器学习/深度学习 自然语言处理 算法
|
16天前
|
SQL 设计模式 安全
Java单例模式几种写法以及代码案例拿来直接使用
Java单例模式几种写法以及代码案例拿来直接使用
28 0
|
23天前
Mybatis+mysql动态分页查询数据案例——工具类(MybatisUtil.java)
Mybatis+mysql动态分页查询数据案例——工具类(MybatisUtil.java)
15 1