遗传算法的基本概念和实现,附Java实现案例!

简介: 基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法。该算法反映了自然选择的过程,即最适者被选定繁殖,并产生下一代。本文简要地介绍了遗传算法的基本概念和实现,希望能为读者展示启发式搜索的魅力。_

image.png

如上图(左)所示,遗传算法的个体由多条染色体组成,每条染色体由多个基因组成。上图(右)展示了染色体分割和组合的方式。_


遗传算法的概念

自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的特性,并且这些特性将添加到下一代中。如果父母具有更好的适应性,那么它们的后代将更易于存活。迭代地进行该自然选择的过程,最终,我们将得到由最适应环境的个体组成的一代。


这一概念可以被应用于搜索问题中。我们考虑一个问题的诸多解决方案,并从中搜寻出最佳方案。


遗传算法含以下五步:


初始化


个体评价(计算适应度函数)


选择运算


交叉运算


变异运算


初始化

该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。


个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。


在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中

image.png

种群、染色体和基因


个体评价(计算适应度函数)

个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。


选择运算

选择运算的目的是选出适应性最好的个体,并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。


交叉运算

交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。


举个例子,下图的交叉点为 3:

image.png

父母间在交叉点之前交换基因,从而产生了后代。

image.png

父母间交换基因,然后产生的新后代被添加到种群中。

image.png

变异运算

在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。

image.png

变异运算前后


变异运算可用于保持种群内的多样性,并防止过早收敛。


终止

在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。


#### 案例实现


种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。


这一迭代过程的伪代码:

START
Generate the initial population
Compute fitness
REPEAT
    Selection
    Crossover
    Mutation
    Compute fitness
UNTIL population has converged
STOP

Java 中的实例实现


以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。


如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望最大化适应度,并提供适应度达到最大的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度最低的个体被新的,适应度最高的后代所替代。

import java.util.Random;
/**
 *
 * @author Vijini
*/
//Main class
public class SimpleDemoGA {
    Population population = new Population();
    Individual fittest;
    Individual secondFittest;
    int generationCount = 0;
    public static void main(String[] args) {
        Random rn = new Random();
        SimpleDemoGA demo = new SimpleDemoGA();
        //Initialize population
        demo.population.initializePopulation(10);
        //Calculate fitness of each individual
        demo.population.calculateFitness();
        System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
        //While population gets an individual with maximum fitness
        while (demo.population.fittest < 5) {
            ++demo.generationCount;
            //Do selection
            demo.selection();
            //Do crossover
            demo.crossover();
            //Do mutation under a random probability
            if (rn.nextInt()%7 < 5) {
                demo.mutation();
            }
            //Add fittest offspring to population
            demo.addFittestOffspring();
            //Calculate new fitness value
            demo.population.calculateFitness();
            System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
        }
        System.out.println("\nSolution found in generation " + demo.generationCount);
        System.out.println("Fitness: "+demo.population.getFittest().fitness);
        System.out.print("Genes: ");
        for (int i = 0; i < 5; i++) {
            System.out.print(demo.population.getFittest().genes[i]);
        }
        System.out.println("");
    }
    //Selection
    void selection() {
        //Select the most fittest individual
        fittest = population.getFittest();
        //Select the second most fittest individual
        secondFittest = population.getSecondFittest();
    }
    //Crossover
    void crossover() {
        Random rn = new Random();
        //Select a random crossover point
        int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);
        //Swap values among parents
        for (int i = 0; i < crossOverPoint; i++) {
            int temp = fittest.genes[i];
            fittest.genes[i] = secondFittest.genes[i];
            secondFittest.genes[i] = temp;
        }
    }
    //Mutation
    void mutation() {
        Random rn = new Random();
        //Select a random mutation point
        int mutationPoint = rn.nextInt(population.individuals[0].geneLength);
        //Flip values at the mutation point
        if (fittest.genes[mutationPoint] == 0) {
            fittest.genes[mutationPoint] = 1;
        } else {
            fittest.genes[mutationPoint] = 0;
        }
        mutationPoint = rn.nextInt(population.individuals[0].geneLength);
        if (secondFittest.genes[mutationPoint] == 0) {
            secondFittest.genes[mutationPoint] = 1;
        } else {
            secondFittest.genes[mutationPoint] = 0;
        }
    }
    //Get fittest offspring
    Individual getFittestOffspring() {
        if (fittest.fitness > secondFittest.fitness) {
            return fittest;
        }
        return secondFittest;
    }
    //Replace least fittest individual from most fittest offspring
    void addFittestOffspring() {
        //Update fitness values of offspring
        fittest.calcFitness();
        secondFittest.calcFitness();
        //Get index of least fit individual
        int leastFittestIndex = population.getLeastFittestIndex();
        //Replace least fittest individual from most fittest offspring
        population.individuals[leastFittestIndex] = getFittestOffspring();
    }
}
//Individual class
class Individual {
    int fitness = 0;
    int[] genes = new int[5];
    int geneLength = 5;
    public Individual() {
        Random rn = new Random();
        //Set genes randomly for each individual
        for (int i = 0; i < genes.length; i++) {
            genes[i] = rn.nextInt() % 2;
        }
        fitness = 0;
    }
    //Calculate fitness
    public void calcFitness() {
        fitness = 0;
        for (int i = 0; i < 5; i++) {
            if (genes[i] == 1) {
                ++fitness;
            }
        }
    }
}
//Population class
class Population {
    int popSize = 10;
    Individual[] individuals = new Individual[10];
    int fittest = 0;
    //Initialize population
    public void initializePopulation(int size) {
        for (int i = 0; i < individuals.length; i++) {
            individuals[i] = new Individual();
        }
    }
    //Get the fittest individual
    public Individual getFittest() {
        int maxFit = Integer.MIN_VALUE;
        for (int i = 0; i < individuals.length; i++) {
            if (maxFit <= individuals[i].fitness) {
                maxFit = i;
            }
        }
        fittest = individuals[maxFit].fitness;
        return individuals[maxFit];
    }
    //Get the second most fittest individual
    public Individual getSecondFittest() {
        int maxFit1 = 0;
        int maxFit2 = 0;
        for (int i = 0; i < individuals.length; i++) {
            if (individuals[i].fitness > individuals[maxFit1].fitness) {
                maxFit2 = maxFit1;
                maxFit1 = i;
            } else if (individuals[i].fitness > individuals[maxFit2].fitness) {
                maxFit2 = i;
            }
        }
        return individuals[maxFit2];
    }
    //Get index of least fittest individual
    public int getLeastFittestIndex() {
        int minFit = 0;
        for (int i = 0; i < individuals.length; i++) {
            if (minFit >= individuals[i].fitness) {
                minFit = i;
            }
        }
        return minFit;
    }
    //Calculate fitness of each individual
    public void calculateFitness() {
        for (int i = 0; i < individuals.length; i++) {
            individuals[i].calcFitness();
        }
        getFittest();
    }
}


目录
相关文章
|
26天前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
62 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
29天前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
45 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
58 0
|
7天前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
35 3
|
9天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
24 2
|
10天前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
10 2
|
15天前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
27 2
|
15天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
12 1
|
28天前
|
Java 数据库
案例一:去掉数据库某列中的所有英文,利用java正则表达式去做,核心:去掉字符串中的英文
这篇文章介绍了如何使用Java正则表达式从数据库某列中去除所有英文字符。
39 15
|
16天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
23 1