Python数据可视化2.1 为什么可视化需要规划

简介:

摘要


数据分析与可视化

大多数可视化故事是围绕问题或话题展开的:数据探索或收集的起源。这问题包含了整个故事的起因,构成整个故事。这样的数据征程以一个问题开始,比如,2014年,报道的伊波拉病毒死亡人数是多少?回答这个问题需要一个彼此协作的团队完成。数据传播者的作用应该是创造一种转变观众看法的经历。

故事的关键在于有意义的可视化过程。这些可视化的内容回答了下面几个问题:

数据充足吗?

有这个数据存在的时间窗吗?

全球哪些相关的事件会影响数据?

需要重申的是,在理解数据的基础上识别出我们试图回答的问题非常重要。有时,在确定最终的问题前,可以先开始挖掘数据。在这种情况下,提炼对数据的理解可能会得到一个改进后更清晰的问题。

在有现成的获取、分析和收集所需信息方法的前提下,这个过程就从输入数据开始。还有一些情况,最好能够通过可视化收集来的信息来消除噪音,而在另外一些情况下,可以在可视化之前先进行数据过滤和数据分析。本章我们将学习不同的数据探索方法,为可视化做准备。下面是我们需要回顾的一些有趣的故事和相关的概念:

获取、解析和过滤数据、探测离群点和异常值、数据挖掘和提炼、可视化呈现以及交互

用数据讲述有趣的故事

感知、演示方法和可视化的最佳实践

交互式可视化—探索事件的听众和布局


2.1 为什么可视化需要规划


可视化的整个过程需要具有不同技能和专业领域知识的人。数据工人努力收集数据并完成分析。数学家和统计学家理解可视化设计原则,并用这些原则完成数据交流。设计师或艺术家在一些情况下,称为开发先驱者具备可视化所需的技能,而业务分析员在寻找顾客行为模式、离群点或突发趋势等。然而,这往往从获取或收集数据开始,步骤如下:

获得或收集数据 这些数据来自外部资源、网站或磁盘上的文件

解析和过滤数据 用编程方法进行解析、清洗和减少数据

分析和提炼数据 删除噪音和一些不必要的维度,发现模式

呈现和交互 用更容易得到和理解的方法展示数据

处理过程中需要做的工作因不同问题而异。在一些情况下,分析比过滤数据要做更多工作。上一章已讨论过,一些案例需要进行反复分析和可视化。换句话说,这些步骤的分布不总是可预测的和一致的。

相关文章
|
19天前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
34 1
|
3天前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
15 0
|
8天前
|
数据可视化 Python
Python 高级绘图:探索数据可视化
在Python中,利用matplotlib、seaborn等库可实现数据的可视化。matplotlib功能丰富,支持基础图表绘制;seaborn则提供了更美观的默认样式。此外,matplotlib还支持3D图形及动态图表的生成,满足多样化的数据展示需求。 示例代码展示了如何使用这些库绘制正弦波、散点图、3D曲面图及动态更新的折线图。通过numpy生成数据,并借助matplotlib与seaborn的强大绘图功能,实现数据的直观呈现。
48 17
|
4天前
|
存储 数据可视化 Python
Python编程中的数据可视化技术
在数据驱动的世界中,将复杂的数据集转换为易于理解的视觉表示形式至关重要。本文将深入探讨如何使用Python进行数据可视化,包括选择合适的库、处理数据和设计有效的图表。我们将一起学习如何让数据讲故事,并确保你的信息传达清晰且有影响力。
|
12天前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
|
14天前
|
数据可视化 Python
Python数据可视化-动态柱状图可视化
Python数据可视化-动态柱状图可视化
|
14天前
|
JSON 数据可视化 数据处理
Python数据可视化-折线图可视化
Python数据可视化-折线图可视化
|
16天前
|
数据可视化 Python
Python实现数据可视化
Python实现数据可视化
|
15天前
|
数据可视化 Python
使用Python进行数据可视化:从入门到精通
【8月更文挑战第60天】本文是一篇面向初学者的Python数据可视化教程,旨在帮助读者掌握如何使用Python及其强大的库(如Matplotlib和Seaborn)来创建引人入胜的数据可视化。我们将从基础开始,逐步深入,最终达到能够独立完成复杂数据可视化项目的水平。无论你的背景如何,只要你对数据可视化感兴趣,这篇文章都将为你开启一段新的学习之旅。
|
20天前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
31 2