梯度会泄漏训练数据?MIT新方法从梯度窃取训练数据只需几步

简介: 梯度交换是现代多机训练常用的通讯方式(分布式训练,联邦学习)。长期以来,人们认为梯度是可以安全共享的,即训练数据不会因梯度交换而泄漏。但是 MIT 的一项研究表明,隐私的训练数据可以通过共享的梯度来获取。

梯度交换是现代多机训练常用的通讯方式(分布式训练,联邦学习)。长期以来,人们认为梯度是可以安全共享的,即训练数据不会因梯度交换而泄漏。但是 MIT 的一项研究表明,隐私的训练数据可以通过共享的梯度来获取。


研究人员将此命名为深度梯度泄漏(Deep Leakage from Gradients),并在计算机视觉和自然语言处理任务上进行了验证。实验结果表明,他们的攻击比以前的方法要强大得多,在各种数据集和任务上,DLG 只需几个梯度步骤即可完全恢复训练数据。对于图像,他们的方法可以实现像素(pixel)级别的恢复;对于文本,可以达到词条(token)级别的匹配。


该论文已经被 NeurIPS 2019 接受。研究者希望通过这篇工作引起大家的警惕并重新考虑梯度的安全性。他们还在论文中讨论了防止这种深度泄漏的几种可能策略,其中最有效的防御方法是梯度压缩


微信图片_20211202144039.jpg



此外,他们还将在 NeurIPS 2019 大会上介绍这项工作。


背景


在协同学习 (collabrative learning) 和联邦学习 (federated learning) 中,每个用户的数据始终储存在本地,仅有模型的梯度在不同设备之前传播。这类算法不需要将数据集中到一处,可以在保护用户隐私的同时,也让模型从海量数据中受益。例如多家医院可以共同训练一个医疗模型而无需共享患者的医疗数据。


然而,「梯度共享」方案是否真的可以保护参与者的私人数据?在大多数情况下,人们认为梯度是可以安全共享的:因为数值形式的梯度并没有直接包含有意义的训练数据。最近的一些研究指出,梯度揭示了训练数据的某些属性(例如是否戴眼镜)。在这篇文章中,研究者考虑了一个更具挑战性的案例:我们可以从梯度中窃取完整训练数据吗?传统观点认为答案是否定的,但 MIT 的研究表明这实际上是可行的。


与之前研究中的弱攻击(使用类标签的属性推断和生成模型)相比,这种深度梯度泄漏是第一次被讨论并给现有的多节点机器学习系统带来了挑战。如果是带参数服务器(Parameter server)的训练(下图左侧),中心服务器能够窃取所有参与者的隐私数据。对于无参数服务器的训练(下图右侧),情况甚至更糟,因为任何参与者都可以窃取其相邻节点的训练数据。研究者在视觉(图像分类)和语言任务(隐蔽语言模型)上的验证了攻击的有效性。在各种数据集和任务上,DLG 只需几个梯度步骤即可完全恢复训练数据。


微信图片_20211202144117.jpg


方法


在这项工作中,研究者提出深度梯度泄漏算法(DLG):公开的梯度会泄漏个人的隐私数据。他们提出了一种优化算法,只需几次迭代即可从梯度中获得训练输入和标签。


为了进行攻击,研究者首先随机生成一对「虚拟的」输入和标签(dummy data and label),然后执行通常的前向传播和反向传播。从虚拟数据导出虚拟梯度之后,他们没有像传统优化那样更新模型权重,而是更新虚拟输入和标签,以最大程度地减小虚拟梯度和真实梯度之间的差异。当攻击结束后,私人数据便完全暴露了出来。值得注意的是,整个过程不需要训练数据集的任何额外信息。


微信图片_20211202144150.jpg


上图中的 ||∇w' - ∇w|| 对于虚拟数据和标签可导,因此可以使用标准梯度下降方法来优化。请注意,此优化需要二阶导数(梯度的导数)。因此假设模型是两次可微。这适用于大多数现代机器学习模型(例如大多数神经网络)和任务。实现该算法并不难,只要选择的平台支持二阶导数即可。此处,研究者选择 PyTorch 作为实验平台,并提供一个仅需 20 行代码的实现


微信图片_20211202144204.jpg


结果


研究者在常用的图片分类任务和语言模型上测试了该深度泄漏的效果。在图片分类任务上,他们观察到具有干净背景(MNIST)的单色图像最容易恢复,而像人脸这样的复杂图像则需要更多的迭代来恢复(下图)。优化完成后,尽管有一些可见的噪声点,但恢复结果基本与原始数据相同。


微信图片_20211202144221.jpg


image.gif


在视觉上,他们比较了其他泄漏算法与 DLG。先前方法 (Melis et al) 基于 GAN 模型。在 SVHN 上,虽然泄漏的结果还可依稀识别出是数字「9」,但这已不是原始训练图像。LFW 的情况更糟,CIFAR 上则完全失败。DLG 展现的泄漏程度远远强于以往的「浅」泄漏算法。


在语言模型上,研究者选用最近流行的 BERT 模型作为实验平台。不同于图像模型的连续输入,语言模型的文字输入往往是离散的。因此他们将 DLG 应用在词条(Token)上,在还原出词条之后再去反向推断原句的构成。他们从 NeurIPS 主页上选取了三句话作为实验对象。


与视觉任务类似,他们从随机初始化的嵌入开始:迭代 0 处的反向查询结果毫无意义。在优化过程中,虚拟词条产生的梯度逐渐向原始词条产生的梯度靠拢。在之后的迭代中,部分原句中的单词逐渐出现。在下表的例 3 中,在第 20 轮迭代中,出现了「annual conference」,在第 30 轮迭代中,得到了与原始文本非常相似的句子。尽管有少部分由于分词本身歧义引起的不匹配,但是原始训练数据的主要内容已经完全泄漏。


微信图片_20211202144231.jpg



防御


深度梯度泄漏(DLG)的攻击程度是之前从未讨论过的。因此,MIT 的研究者也测试了几种防御的方法。


他们们首先实验了梯度扰动(Noisy gradients)并尝试了高斯噪声(Gaussian noise)和拉普拉斯噪声(Laplacian noise)。如下图所示,防御并不是很理想:只有在噪声大到使准确率降低时(> 10^-2),该策略才能够成功防御深度梯度泄漏(DLG)。


他们也测试了低精度梯度对于深度梯度泄漏(DLG)的防御效果。遗憾的是两种常用单精度格式(IEEE Float 16, B Float 16)都不能阻止泄漏。8-bit 数据虽然能阻止该泄漏,然而模型的性能却也明显降低。在多种尝试后,他们发现最有效的防御方法是梯度压缩,只要稀疏性大于 20% 即可成功防御。DGC(Lin 2017)的研究表明可以在梯度的稀疏性达到 99% 以上时,依旧训练出性能相近的模型。因此,压缩梯度是一种对抗深度梯度泄漏(DLG)的有效手段。


微信图片_20211202144257.jpg

微信图片_20211202144323.jpg


他们将在 NeurIPS 2019 大会上介绍这项工作,Poster Session 将在温哥华当地时间 5pm 到 7pm 在 East Exhibition Hall B + C 154 号展位进行,欢迎感兴趣的老师、同学、工业界同事前去交流。



相关文章
|
5G 芯片
带你读《无人机网络与通信》之二:空对地与空对空数据链路通信
本书针对无人机系统两个关键问题—通信组网和管控体系做了比较全面和深入的描述和探讨,特别是以大量笔墨分析了现有无线通信解决方案,对比了不同通信协议,得出了很有价值的研究结论。无人机的跨越式发展将涉及公共安全管理的问题,构建管控体系是当务之急,分级管理以及制定相应的适航标准是一件大事情,本书对此也进行了系统的、建设性的讨论。未来,高档无人机和无人机集群将对环境具有更强的感知能力和自适应能力,还有对任务的自规划和学习、调整能力,本书讨论的内容将为它们的发明、部署和监督提供宝贵的信息。
|
网络协议 Python
python中socket客户端发送和接收数据
【4月更文挑战第7天】本教程聚焦TCP客户端数据发送与接收。使用Python的`socket`模块,通过`send()`发送字节串至服务器,如`client_socket.send(message_bytes)`;用`recv()`接收数据,如`received_data = client_socket.recv(buffer_size)`。异常处理确保网络错误时程序健壮性,例如`try-except`捕获`socket.error`。理解和掌握这些基础操作对于构建稳定的TCP客户端至关重要。
2527 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
《从2.3倍增速剖析:DeepSeek隐层表征对齐技术的创新密码》
DeepSeek是国内首个对标GPT-4架构的AI大模型,其文本理解速度提升2.3倍,得益于隐层表征对齐技术。该技术通过优化不同隐层间的信息传递,打破传统模型在处理复杂任务时的效率瓶颈,使模型能更高效地捕捉语义和语法信息。它与动态推理优化等技术协同工作,大幅提升文本、多模态理解及推理效率,在智能客服、写作辅助等领域展现出巨大潜力。
186 18
《从2.3倍增速剖析:DeepSeek隐层表征对齐技术的创新密码》
|
3月前
|
XML JSON 数据挖掘
电商API 接口是什么?怎么使用API?
电商API是电商平台提供的数据接口,允许第三方工具与其系统交互,实现订单管理、库存同步、数据分析等自动化操作。通过API,卖家可高效管理多平台业务,提升运营效率。
|
9月前
|
云安全 人工智能 安全
《大模型安全研究报告(2024年)》正式发布
《大模型安全研究报告(2024年)》正式发布
|
8月前
|
安全 API 算法框架/工具
大模型文件Docker镜像化部署技术详解
大模型文件Docker镜像化部署技术详解
1041 2
|
11月前
|
机器学习/深度学习 分布式计算 供应链
阿里云先知安全沙龙(上海站) ——大模型基础设施安全攻防
大模型基础设施的安全攻防体系涵盖恶意输入防御和基础设施安全,包括框架、三方库、插件、平台、模型和系统安全。关键漏洞如CVE-2023-6019(Ray框架命令注入)、CVE-2024-5480(PyTorch分布式RPC)及llama.cpp中的多个漏洞,强调了代码安全性的重要性。模型文件安全方面,需防范pickle反序列化等风险,建议使用Safetensors格式。相关实践包括构建供应链漏洞库、智能化漏洞分析和深度检测,确保全方位防护。
|
存储 C++ Python
[oeasy]python037_ print函数参数_sep分隔符_separator
本文介绍了Python中`print`函数的`sep`参数,即分隔符。通过回顾上文内容,解释了类型与`type`的概念,并强调了参数类型的重要性。文章详细探讨了`print`函数如何使用`sep`参数来分隔输出值,默认分隔符为空格(序号32)。还讨论了如何修改分隔符为其他字符,如冒号,并解释了为何反斜杠需要使用双反斜杠表示。最后,文章追溯了`sep`名称的由来,以及相关词汇的历史背景,如盎格鲁-萨克逊人的武器和语言。
378 1
|
消息中间件 API RocketMQ
你的RocketMQ消费者组(Consumer Group)在查看时显示为离线,这可能是由于消费者组的状态没有被正确更新
你的RocketMQ消费者组(Consumer Group)在查看时显示为离线,这可能是由于消费者组的状态没有被正确更新【1月更文挑战第10天】【1月更文挑战第49篇】
1994 5
|
JSON API 网络架构
Django 后端架构开发:DRF 高可用API设计与核心源码剖析
Django 后端架构开发:DRF 高可用API设计与核心源码剖析
431 2