迁移学习中如何利用权值调整数据分布?DATL、L2TL两大方法解析-阿里云开发者社区

开发者社区> 开发者小助手-bz8> 正文

迁移学习中如何利用权值调整数据分布?DATL、L2TL两大方法解析

简介: 本文综述了两篇在迁移学习中利用权值调整数据分布的论文。通过这两个重要工作,读者可了解如何在迁移学习中进行微调的方法和理论。
+关注继续查看

深度神经网络的应用显著改善了各种数据挖掘和计算机视觉算法的性能,因此广泛应用于各类机器学习场景中。然而,深度神经网络方法依赖于大量的标记数据来训练深度学习模型,在实际应用中,获取足够的标记数据往往既昂贵又耗时。因此,一个自然的想法是利用现有数据集(即源域)中丰富的标记样本,辅助在要学习的数据集(即目标域)中的学习。解决这类跨领域学习问题的一种有效方法就是迁移学习:首先在一个大的标记源数据集(如 ImageNet)上训练模型,然后在目标数据集上进行模型调整更新,从而实现将已训练好的模型参数迁移到新的模型来帮助新模型训练。


基于深度神经网络的迁移学习主要有三种方式:一是迁移学习(Transfer Learning),重新训练全连接层,其他预训练模型的卷积层不变;二是特征向量提取(Feature Vector Extraction),利用预训练模型的卷积层提取源和目标数据集的特征向量,之后训练目标域中的全连接网络;三是微调(Fine-tune),重新学习分类层的参数,而其余网络层参数则沿用预训练模型的初始化值。


研究人员发现,仅靠改进迁移学习的方式(如上述三种迁移学习方式)并不能进一步降低目标域中模型的损失值,而选择改进用作模型预训练的源数据集的丰富程度则是一种有效的方法。源数据集的丰富程度并不仅由数据集中数据量的大小决定,而同时取决于用于预训练的数据集是否能够有效捕获到与目标域中数据集相似的差异性特征(因素)。前期的方法主要是通过不同的度量方法找到源数据集与目标数据集中的相似样本数据,例如 [1] 使用滤波器组响应中的特征来选择源数据集中的最近邻样本,与使用整个源数据集相比,该方法具备更好的性能。[2] 利用土方运距(Earth Mover』s Distance,EMD)对源数据集和目标数据集之间的区域相似性进行量化计算,之后利用一个简单的贪婪子集生成选择准则提高目标测试集的性能。然而上述方法只是找到相似的样本数据,无法有效捕获目标数据集中的变化判别因素,因此迁移学习的效果改进有限。这种微调相当于对迁移学习的前两种步骤的改进,进一步提升了迁移学习的性能,因此本文探讨的是改善微调方式的迁移学习。


Ngiam et al. 提出了一种利用权值捕获源域和目标域中相似信息从而有效调整数据分布的方法,即基于目标数据集的重要权值域自适应迁移学习方法(Domain Adaptive Transfer Learning,DATL)[1]。DATL 利用概率形态识别源数据集中能够有效捕获目标数据集中变化判别因素的样本数据,使用 JFT 和 ImageNet 数据集作为源训练数据,并考虑一系列用于微调的目标数据集。在微调过程中,对网络中的分类层进行随机初始化训练。在这项工作的基础上,Zhu et al. 提出了共享权值的概念,即对源和目标任务模型之间共享权值联合优化的学习框架(Learning to Transfer Learn,L2TL)[2],其中关于共享权值的计算是利用基于目标数据集的性能度量矩阵的强化学习模块(RL)实现的,从而保证自适应输出每个源数据集中类别的权值。L2TL 基于目标数据集中的测试性能自适应的推断域相似度。本文对 DATL 和 L2TL 进行详细的分析,目的是探讨在迁移学习中利用权值调整数据分布的有效性,以及计算权值的不同方式对迁移学习效果、计算成本等的影响。


1、Domain Adaptive Transfer Learning with Specialist Models


原文地址:https://arxiv.org/pdf/1811.07056.pdf


方法分析


DATL 使用 JFT 和 ImageNet 数据集作为源预训练数据,不在源数据集和目标数据集之间执行任何标签对齐处理。而是利用数据集之间的标签产生的权值进行调整。在微调过程中,对神经网络中的分类层进行随机初始化训练。首先考虑一个简化的设置,即源数据集和目标数据集位于相同的像素 x 和标签 y 值集上。预训练阶段,在源域中优化参数θ以最小化损失函数:


(1)


微信图片_20211202065008.jpg


其中 Ds 表示源数据集,L(f_θ(x),y) 为模型 f_θ(y) 的预测与标签真值 y 之间的交叉熵损失函数。源数据集 Ds 中的数据分布与目标数据集 Dt 中的分布可能不同,通过加大与目标数据集最相关的样本的权值来解决这种问题。目标数据集 Dt 中的损失函数为:


(2)

微信图片_20211202065101.jpg其中 Ps、Pt 分别表示源和目标数据集的概率分布。结合以上两个公式,重新计算(2)包含源数据集 Ds 的损失函数如下:


(3)


微信图片_20211202065124.jpg


接下来,假设 Ps(x|y) 约等于 Pt(x|y),即在源数据集中给定特定标签的样本分布与目标数据集的近似分布是相同的,(3)可简化为:


微信图片_20211202065205.jpg


其中 Pt(y)/Ps(y) 为我们需要的权值。


为了使 DATL 在实践中适用,需要对简化设置(即源数据集和目标数据集共享相同的标签空间)进行放松假设,放松假设的处理过程具体为:「在真实的应用场景中,源数据集和目标数据集一般具有不同的标签集,解决方案是 Pt(y) 和 Ps(y) 的估计都在源域中进行,而不再基于目标域估计 Pt(y)。通过将标签出现的次数除以源数据集的样本总数计算分母 Ps(y)。为了估计 Pt(y),则使用一个分类器来计算来自源数据集的标签在来自目标数据集的样本上的概率。」


完整的 DATL 方法示例见图 1。为了计算重要性权值 Pt(y)/Ps(y),首先使用在整个 JFT 数据集上预训练的图像模型来评估来自目标数据集的图像。对于每一幅图像,能够得到其对 JFT 中 18291 个类的预测。对这些预测进行平均化处理后得到 Pt(y)。通过将标签在源预训练数据集中出现的次数除以源预训练数据集中的样本总数,直接从源预训练数据集中估计 Ps(y)。因此,权值 Pt(y)/Ps(y) 表示源预训练数据集中给定标签的重要程度。使用这些重要性权值在整个 JFT 数据集上训练生成预训练模型,然后在目标数据集上进行微调。


微信图片_20211202065228.jpg图 1. DATL 方法完整过程


实验分析


本文实验中通过使用重要性权值从源数据集(JFT 和 ImageNet)中采样样本来创建预训练数据集。预训练阶段使用 Inception v3 和 AmoebaNet-B 神经网络模型,微调阶段使用随机初始化的分类层来代替预训练的分类层。利用 SGD 对模型进行 20000 步的训练,每个小批量包含 256 个样本。使用保持验证集(hold-out validation set)计算权值正则化和学习速度参数。


微信图片_20211202065302.jpg表 1. 使用 Inception v3 的迁移学习结果


表 1 给出使用 Inception v3 的迁移学习结果,每一行对应一个预训练方法,其中 Adaptive Transfer 指的是本文提出的方法。每列对应一个目标数据集。表 1 中结果是除 Oxford-IIIT Pets 外的所有数据集的最高准确度,我们给出了每个类的平均准确度。所有结果均执行 5 次微调处理。由表 1 结果可知,当源数据集与目标数据集完全匹配时,迁移学习效果最优;当源域和目标域不匹配时出现了负迁移。值得注意的是,在预训练阶段使用更多的源数据反而会影响迁移学习的效果。在所有类别情况下,在整个 JFT 数据集上预训练的模型效果都差于在某些具体子集上预训练的模型效果。此外,使用本文提出的 DATL 方法甚至比手动选择标签效果更好。


微信图片_20211202065329.jpg表 2. 使用 AmoebaNet-B 的迁移学习结果


表 2 给出了使用 AmoebaNet-B 的迁移学习结果,实验目的是验证较大模型是否能够更好的捕获更多的变化因素。AmoebaNet-B 上的实验参数超过 5.5 亿。另外,表 2 中的实验结果(AmoebaNet-B)优于表 1 的结果(Inception v3)。说明使用较大的模型能够缩小一般子集和特定子集之间的性能差距。


微信图片_20211202065359.jpg图 2. 使用 ImageNet 作为源预训练数据集时,每个目标数据集的重要性权值分布


最后,图 2 给出了使用 ImageNet 作为源预训练数据集时,每个目标数据集的重要性权值分布。由图 2 可知目标数据集之间的分布差异很大。FGVC Aircraft 只选择了一些粗粒度的标签,而 Oxford Pets 则选择了更广泛的细粒度标签,这反映了 ImageNet 数据集中固有的偏差。


总结


本文提出的 DATL 方法能够有效识别源预训练数据集中包含类别判别信息的数据样本,当未能有效捕获判别信息时迁移学习的效果就会受到影响。此外,本文实验还证明当使用较大的神经网络模型时,在类别子集中预训练的迁移学习效果更好。也就是说,如果是在完整的源数据集中完成预训练,则训练过程还需额外处理细粒度类别间的区别。


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【飞桨PaddlePaddle】迁移学习快速入门,完整源码+讲解演示
【飞桨PaddlePaddle】迁移学习快速入门,完整源码+讲解演示
9 0
阿里云服务器怎么设置密码?怎么停机?怎么重启服务器?
如果在创建实例时没有设置密码,或者密码丢失,您可以在控制台上重新设置实例的登录密码。本文仅描述如何在 ECS 管理控制台上修改实例登录密码。
7265 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,大概有三种登录方式:
2512 0
零示例学习中的映射域迁移 (projection domain shift) 问题
本文介绍了两种解决零示例学习中的映射域迁移问题的方法 AEZSL 和 DAEZSL 。
535 0
高效迁移 HDFS 海量文件到 OSS | 学习笔记
快速学习高效迁移 HDFS 海量文件到 OSS。
13 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
8960 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
10554 0
1549
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《Nacos架构&原理》
立即下载
《看见新力量:二》电子书
立即下载
云上自动化运维(CloudOps)白皮书
立即下载